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Abstract
Physical systems can frequently be modeled by polynomial equations.
Then interesting properties of the systems can be determined from the
zeros of the polynomials. Standard codes compute those zeros from the
coefficients in a stable fashion. But what should be done if the
zeros are inherently hypersensitive to changes in the coefficients

of their polynomials? Newly developed methods can be used to explain

such an 111 conditioned polynomial by exhibiting a nearby polynomial
with one or more multiple zeros which are well conditioned. Further-
more these methods can be abused by uncritically replacing the i11
conditioned polynomial with the well conditioned one nearby. When

such a replacement is unwarranted, bounds can be obtained on the varia-
tion of the zeros corresponding to the uncertainty in the coefficients.
One way to obtain such bounds is to exploit the nearby well condi-
tioned polynomial to obtain a revision of the classical Puiseux
fractional power series expansions of the zeros.

These notions have been investigated experimentally in a long
series of computer calculations. In the course of these calculations
the existing stock of numerical techniques has been augmented. A new
way is now known for computing the condition numbers which measure the
condition of zeros. The previously known equations to be solved for

the nearest polynomial with a single multiple zero are now joined by

1




equations for the nearest polynomial with a complex conjugate pair of
double zeros and equations for the nearest polynomial with several
distinct double Zeros. A1l these equations have simplified forms
because certain Lagrange multipliers vanish in the complex case. But
Some examples demonstrate that when only real perturbations are con-
sidered, the Lagrange multipliers do not always vanish, Finally, there
is some theory about the location of the nearest polynomial with a
double zero,

The numerical experiments show that Newton's method may be used
successfully to solve the equations in the cases of greatest interest
when the expected result is sufficiently simple. The techniques may
also be applied to polynomials such as Wilkinson's famous example whose
Zeros are the integers from 1 to 20. But then the numerical resylts
suggest that that i1 conditioned polynomiai Can not be explained
successfully as a small perturbation of a well conditioned polynomial,
Instead Wilkinson's polynomial lies in a region of polynomial space

whose geometry seems to be exceptionally complicated,

that are much too small. The wel] conditioned multiple zeros of g
nearby polynomial are not amenable to Taylor series expansions but may
be expanded in alPuiseux fractional Power series. These fractional
powar serizs, however, also have unsatisfactory regions of convergence.
But by choosing a different starting point the convergence problem of

the Puiseux series can be overcome to produce, in principle, serieg

that. converge rapidly throughout the region of interest. |In practice
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ti.ose series are used to produce realistic bounds on the uncertainties
in the zeros. Full exploitation of these techniques awaits adequate

facilities for symbolic algebra.
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CHAPTER 1
INTRODUCTION AND MOTIVATION

1. What is the Problem?

The research to be reported in the following chapters deals with
"i11 condition" of the zeros of polynomials. "I11 condition" means
unusually great sensitivity of the zeros to changes in the coefficients
of the polynomial.

Consider the following example: a physicist has determined that
a parameter of interest may be determined by finding the zeros of a
polynomial. He computes the coefficients of the polynomial and solves
for its zeros with any of a number of computer codes which find zeros

of polynomials. Then the computer states that his polynomial of degree

six has the following zeros:

-2.0
-1.0
+ .99999998 + ,000104625 1
+2.0
+3.0

Perhaps being distrustful, the physicist computes the coefficients of
the polynomial which has exactly these zeros. He finds that those
reconstituted coefficients agree with the original coefficients of
the polynomial he gave the computer to well within the uncertainty

in the coefficients, which were derived from experimental data. He
will usually find that the differences between those sets of coeffi-
cients are comparable in size to a few rounding errors, so he seems

to have no grounds for complaint with the computed result.
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None the less there may be sound physical reasons why the answers
he seeks can not have imaginary components. Then why do they appear
in his answer? Is he justified in ignoring them? The methods pro- L
posed in the following chapters provide a way of dealing with these
questions. '

Those methods would “explain" the physicist's quandary as follows.
First they would show that the two complex conjugate zeros are
extremely i1l conditioned. That is, small changes in the coefficients
comparable with experimental error could easily cause them to un’~rgo

much larger real or complex changes. The i11 condition arises from

the fact that the physicist's polynomial is very close to a polynomial
with a double zero. In fact, the methods we will discuss show that
changing each coefficient of the polynomial by as little as one part

9

in 10” suffices to cause the polynomial to have a double zero at 1.0.

That double zero is well conditioned, in a sense to be explained later.

Therefore the physicist might "ameliorate" the condition of the ans-
wers to his problem by accepting a double zero at 1.0 in place of the
complex conjugate pair if the experimental uncertainties in the coeffi-
cients exceed one part in 109 and there is physical justification for
assuming that nis answer should be in the form of a double zero.

Where that justification is lacking, the i11 condition of the result

is a warning signal that a misjudgment in the design of the experiment
and computation may have invalidated the results.
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2. WYhat is I11 Condition?

We turn now to precise definitions of terms like posedness,

condition, and stability. The terms have been defined by numerical

analysts in many different and sometimes inconsistent ways; our defi-
nitions will be those used by W. Kahan in numerical analysis courses
at the University of California, Berkeley [18]. These definitions
are 21so close to those in the widely used text by Dahlquist and
Bjorck [6].

The definitions to follow make sense if one thinks of a problem
having a definite set of input data and a similar set of output data
which we call the solution. For instance, in the problem of deter-
mining the n complex zeros of an n'th degree polynomial, the n+1
coefficients of the polynomial are the input data and the n zeros
are the solution. In contrast, the “problem" of finding a polynomial
approximating a given function is incomplete unt1l we specify.a
criterion for choosing the best approximation. That criterion could
be regarded as fixed, and hence part of the problem, or subject to
change, and hence part of the data.

If furthermore the data are regarded as uncertain, then the infor-
mation on the size of the uncertainty becomes part of the data. This
information is often expressed in terms of a metric or norm on the
space from which the input data are drawn. The norm itself may also
be part of the input data if it is subject to change. The purpose of
the norm on the input data, for exarple, is to provide a way for the
problem poser to specify which inputs are so close together as o be
indistinguishable from his point of view. In addition, there may be

a norm on the output solution with a similar purpose. As we shall
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see, the poser may be obliged to prbvide these norms evén if the input
data are regarded as exact.

Within this framework a problem is well posed if it (1) has a
solution which (2) is unique and (3) varies continuously when the
input data vary continuously. Consequently an i1l posed problem may,
for some input data, have several solutions or none or the solution
may change discontinuously when the input data is changed continuously.
The answer to the question of whether a problem is well posed is
either yes or no.

Given a problem that is analytically well posed, we call it well
conditioned if changes that we consider negligible in the input data
can only cause changes in the solution that we also consider negligi-
ble. Conditioning can be measured by computing the partial derivatives
of the solution with respect to changes in the input data. If the
appropriate norm of these par. ~ derivatives, called the condition

number, is too large, the problem is i1l conditioned. Unlike posed-

ness, then, there is not a sharp break between well and i11 condi-
tioned problems, but rather a continuum.

From our point of view, stability is a property of algorithms,
rather than problems, and relates to the question, "Does this
algorithm always produce a solution as good as can be expected, con-
sidering the condition of the problem?" In 2resting numerical
algorithms almost always fail to produce the mathematicallv correct

solution to a problem. This is because such alaorithms usually commit

rounding errors due to finite precision arithmetic and truncation
errors due to terminating infinite analvtical processes after a finite

number of steps.

r




O s M il VIRAER - W H N &

h{m?‘l P ;

A stable algorithm has the property that the uncertainty it con-
tributes to the solution of a problem is not much larger than the
uncertainty that would be associated with small changes in the input
data. Figures I.1 and I.2 illustrate a stahle algorithm applied to an
111 conditioned problem. A stable algorithm applied to a well condi-
tioned problem yields nearly the correct answer. Many stable
algorithms, moreover, can be shown to deliver the exact solution of
a2 problem with input data very near the given input data, even if that
data is i11 conditioned.

To conclude the definitions, recall that the key to the problem
of the physicist in section 1 was to find the polynomial with a double
zero nearest his polynomial. In general, the polynomials with one or
more multiple zeros form a subset of the space of all polynomials.
These subsets have been called pejorative manifolds by W. Kahan [17],
because polynomials near a pejorative manifold always have some i1l
conditioned zeros. Since they are the only manifolds that interest

us, we will use the term manifold in subsequent chapters to mean one

of these pejorative manifolds. Thus the manifold of n'th degree monic

polynomials with one m-tuple zero is a surface with dimensionality
n-m+1 1in the space of all n'th degree monic polynomials,

The distinction between wrong answers caused by an i11 conditioned
problem and wrong answers caused by an unstable algorithm applied to
a well conditioned problem is well known in the west mostly because
of the work of Wilkinson [34]. But similar concepts are also present
in the contemporaneous work of the Soviet author V. Zaguskin [37].
Zaguskin defines condition numbers with respect to small finite rather

than infinitesimal perturbations. In well conditioned cases his
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methods give an idea of how much the zeros of a polynomial may vary

as the polynomial varies within its finite uncertainty. In chapter VII

we will show how such notions may be applied even for an i11 condi-

sl i e s e
LN

] tioned polynomial.

There we will show how to develop the whole series

of which the infinitesimal condition number is simply a bound on the

P i

first term.
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3. Examples of Definitions

An example might help to clarify the definitions of the previous

i

section. Consider the problem of finding the smaller real zero of the

quadratic polynomial

ﬂx)=x2+2x+1-s'fm'!s|i051.

v R

We see that for € = 0, there is a real double zero; for € < 0
there are no real zeros; for € > 0 there are two distinct real
zeros. Since in some cases of the input there is no solution to this
problem, it is 111 posed.

Suppose we restrict the problem so 0 < e < 0.1, Now the pro-
blem has become well posec but i1l conditioned. Consider the depen-

dence of the zeros of f - g

x =-12%/& ,

-

oX

L

-t 1/(2/) .

So as e~ 0 this condition number becomes arbitrarily large in
magnitude. Any small error in the original data or in the computation
may be magnified by an arbitrarily large factor. Note how in this
case, as in many others, approaching 111 posedness corresponds to
worsening condition. See Kahan [17],
What are the pejorative manifolds in the quadratic case? There
is just one, the manifold of quadratics with double zeros. In the i

space of quadratics
x2+bx+c,

the manifold of polynomials with double zeros is just the subset of

E
R R R S L e Y . R ~ S —_— —g
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polynomials with

It is evident that the previous polynomial

x2 +2x+ Y - ¢

lies rather near this manifold; that nearness causes the i1l condition
of its zeros.
Stability may be illustrated by considering the problem of find-

ing the small real zero X of the polynomial

X2-2X+6,

20

for |&] <10 The usual formula yields

§=]-Vi-6 .

On most computers there will be numbers & large enough to be
representable but small enough that the computed value of 1-6 is 1,
In this case the computed X = 0. For many purposes this is unaccep-

tably far from the correct answer which is X # 16. A check of con-

2
dition numbers shows that they are small. That the fault lies with
the algorithm implementing the usual formula, rather than with the
problem, can be seen by considering another less well known but equi-

valent formula for the zero:
X =68/(1+/A-8) .

An algorithm implementing this formula will compute an approximately

correct answer for small & even in the face of rounding error,
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This should come as no surprise since this polynomial is obviously far

from the pejorative manifold.
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4, What is I11 Condition of Zeros of Polynomials?

The chapters to come will discuss methods for dealing with i11
conditioned zeros of polynomials. In order to see why such methods
might be useful, we consider first the problem of finding the zeros

of a polynomial from its coefficients. Several algorithms are now
known which are not only stable in the sense outlined above, but also
are more efficient than other (unstable) methods. Best known of these
is that of Jenkins and Traub [14]; another good one is Brian Smith's
version of Laguerre's method [30]. FORTRAN implementations of both
these algorithms are available in the IMSL library [13]. The sta-
bility of these algorithms may be shown for a specific problem by com-
puting the coefficients of a polynomial whose zeros are exactly the
zeros computed by the algorithm. Then the coefficients of the original
polynomial do not differ much from the coefficients of the polynomial
recomputed from the numerical solution.

But if we happen to know the exact zeros of the original polyno-
mial, we may find that they differ greatly from the zefos that were
computed. If this is the case -- that a stable algorithm has produced
results that are more than slightly wrong -- then the problem must be
i11 conditioned, In the previous section we saw that the condition
of zeros of a quadratic polynomial was related to how nearly the poly-
nomial came to having a2 double zero. It is a basic fact about the
zevos of analytic functions that nearness to a function with a multiple
zero corresponds to 111 condition of the zeros,

As a simple example consider the analytic function

f(1) = (1-a)"a(1)

R




where g(t) is analytic and g{a) # 0. If f(t) is perturbed by

eh(t), h(a) # 0, then the perturbed zeros B satisfy

f(B) 'Eh(B) =0 ]

e = (g(B)/h(8)) (B-a)™ .

In chapter VII we will see that the last equation can be transformed

to express B-o as a power series in e]/m‘

Thus there are m 2zercs
B which converge to a as e -+ 0,

Implicit differentiation reveals the dependence of a solution B8

on the data «¢: i

1
R )

As ¢+0, B~+a, g(B)+gl(a), and h(B) + h{a). Simultaneously

8.1,
de ¢

the condition number I%%» increases 1like 1/(|e|] ']/"3 without
bound, so the condition of each B becomes infinitely bad.

One way to visualize the meaning of the condition number is to
think of the process of finding a zero of a polynomial as a mapping
from the space of polynomials into the complex plane. Then we can
ask how an infinitesimal neighborhood in polynomial space is mapped
into the complex plane. If that neighborhood is spherical then its
image will usuaily look elliptical. In a well conditioned case the
ellipse is ¢mall; in an 111 conditioned case large. In the case of an
infinitesimal neighborhood of a polynomial with a multiple zero, the

image is a large star-shaped region.

ol e
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The research to be described is motivated by the desire to know
how large these image regions may become for polynomials within a finite
ball. The condition number tells how large the ellipses may be in the
infinitesimal case; it can be used to bound the first term of a power
series. Just when that first term is large, however, the power series
turns out to have a short radius of convergence, In fact, if a mani-
fold of polynomials with multiple zeros runs through the ball, then
the usual power series can not converge at every point in the ball.

But by exploiting that manifold as described in chapter VII we
may be able to get. fn principle, a different kind of series that con-
verges throughout the ball., The notion underlying that series may be
used, in practice, to obtain a bound on the size of the image of the
ball.

If the polynomial frow which we expand lies on a manifold, the
nature of series expansions of its multiple zeros is different than
when the polynomial 1ies off the manifeld, The series includes frac-
tional powers of the perturbations. This is not a severe handicap.
However it may be that there are a priori reasons for knowing that
the only significant perturbation, are those which are along the mani-
fold and maintain multiplicities. Then reasonable condition numbers
can be defined which are finite with respect to those perturbations.
Furthermore the expansions used to bound the changes in the zeros take

much simpler forms.
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5. Treating the Symptoms of I11 Condition

Large condition numbers are a warning that small changes in the
input data cause large changes in the solution of a problem. In the
next section we consider ways of identifying the underlying difficulty,
but now we will merely treat the symptoms: substantial changes in
our answers are being caused by seemingly insignificant changes in our
data or by rounding and truncation errors in our algorithms.

If our data is derived experimentally, we could try to perform
more careful experiments in order to get the variation in our answers
within acceptable limits. If the data is not subject to empirical
uncertainties, then the errors in our algorithms are the cause of our
symptoms. We may use increased precision to reduce the effect of
rounding erfors. and we may carry out more steps of infinite processes
to reduce truncation errors. For polynomials, this would mean carry-
ing out more steps of iterative processes such as Newton's method.

If the coefficients of a polynomial are known exactly, then
rational arithmetic may be used to determine the zeios to any required
accuracy. Pinkert [41] discusses such a method, These methods are
relatively slow on present computers, but they do eliminate i11 con-
dition as a factor affecting accuracy of computed zeros. Exact arith.
metic methods are inappropriate, however, when the coefficients are
not precisely known; then explicit account should be taken of 11
condition.

Changing the algorithm does not change the condition of the pro-
blem, but an unstable algorithm can aggravate our symptoms of i1l
condition. Sometimes we can reformulate the problem to take advantage

of a stable algorithm. In other cases we can reformulate the problem

RRpapa—
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to make it better conditioned.

Thus we will see later that the condition of a zero of a poly-
nomial may sometimes be improved by translating the polynomial so that
the zero to be found is near the origin. In certain cases this may
be helpful, but care must be taken that the translation is computed
with insignificant rounding error, The translation of the coeffi-
cients is computed effectively by evaluating the polynomial and n of
jts derivatives. Usually such translations must be performed in
higher precision when i11 conditioned zeros are involved, Stewart
[31] shows that the effect of such translations, carried out in con-
ventional fashion, is comparable tv the effect of rounding errors in
the coefficients of the original polynomial. Kahan [18] has shown
that unconventional algorithms can sometimes do better than would be
expected from [31], but his algorithm is a fluke.

If one is concerned with numerical treatment of a polynomial that
arises experimentally, it may be that careful translation is the most
reasonable method of "ameliorating” i11 condition that has no obvious
source. Such translation is justified if the zeros represent a phy-
sical quantity whose origin is arbitrary. The coordinates of a point
on a line, for instance, are sometimes arbitrary, but not if something
interesting, such as a body exerting a central force, occurs at the
origin,

However performed, translation amounts to attacking the problem
of i11 condition piecemeal, one zery at a time, rather than trying to
deal with the overall condition of the problem. And the results of

translation in no way "expiain" the i11 condition.
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6. Explaining I11 Condition

The methods to be presented later try to "explain" i11 condition
by finding the nearest polynomial with all its zeros well conditioned.
That polynomial will be on one of the pejorative manifolds of polyno-
mials with multiple zeros. At the end of chapter II we will see that
if an m-tuple zero is sufficiently i11 conditioned there must be a
polynomial with an m#1-tuple zero fairly close by. So we may in
succession try to find the nearest polynomial with a double zero, a
triple zero, two double zeros, and so on. We may count ourselves
successful if we find that one of these nearest polynomials has all
of its zeros well conditioned and yet is close enough to our original
polynomial. When we are successful, our starting polynomial may be
explained as a small perturbation of a polynomial with some multiple
zeros, all of which are well conditioned.

The reader with some experience may feel that the nearest such
polynomial should be apparent from inspection of the distribution of
zeros, for i11 conditioned zeros often form obvious clusters. After
all, an m-tuple zere subjected to a suitably small perturbation wiil
usually split up into m distinct zeros, and such configurations
should be easily recognized. However, the i11 conditioned simple
zeros scatter so quickly that they may soon lose their clustered
aspect. As we shall see later when we discuss Wilkinson's polynomial,
it is sometimes impossible to guess just by inspection of the zeros

what the nearest polynomial with well conditioned zeros might be like,

We may find, morerver, that no small perturbation will get us to
a polynomial with all zeros well conditioned. Rather, by moving

increasing distances we may increasingly improve the condition of the
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zeros, but in order to impfnv;.théfcbndif§aﬁ”;; ﬁ11w;é}bsyisqmﬂcﬁ%£§J:r
we want it is necessary to move much further than we want. Wilkinson's
# polynomial seems to be of this sort; it is discussed in chapter X.
There is no natural division between the polvnomials which are
¢ explainable and those which are not; however we set a somewhat arbi-
trary boundary by our choice of norm and tolerance.

If we do find a nearby polynomial with all of its zeros well con-
ditioned with respect to variations that maintain multiplicities, then
we might say that moving to the new polynomial has ameliorated the
problem of i11 condition. Such a viewpoint makes sense on1y if the
new polynomial is indistinguishable from the original and it is
reasonable to hypothesize that the original problem could have a built
in constraint in favor of multiple zeros. This constraint may have
existed unrecognized heretofore, or perhaps there was no convenient
algorithmic way to provide for it when finding the zeros of the poly-
nomial from the coefficients. Such a constraint may reveal itself in
the following way: an experimental system has the property that the
observed parameters always seem to be well conditioned functions of
the controllable parameters. The mathematical model for the system,
however, might lack that well conditioned relation of output to input,
Should we add something to the model? We could add a constraint in
favor of some multiplicity structure, e.g. one double zero, that is
inspired by a feature of the physical system, For instance a symmetry

¢ in the experimental system might correspond to a double zero in the

polynomial.

rag

Constraints upon the form of the solution should not be imposed

merely to obtain a well conditioned solution. Not all experimental
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systems are well conditioned, and not all problems should have well
conditioned solutions. Suppressing annoying numerical properties may
be equivalent to ignoring the most important and interesting features

of the system. It may be that the observed i11 condition corresponds

-

to an important feature of the problem that is not properly reflected
in our theory. In other cases il11 condition may mean that the problem
we seek to solve is so close to being i1l posed that it is senseless

to try to solve the probhlem in the presence of error,

Example. Figure I.3 is an example of a physical system. It is
the well known damped harmonic oscillator discussed in elementary
physics courses; see, e.g., Kibble [20]. A mass m may travel up and‘
down. It is attached through a spring to the roof; the other end is
attached to a shock absorber (dashpot). If the mass is moved from
its rest position and released it will eventually return to its rest
position, because or friction forces in the dashpot. The goal of an
engineer might be to design the dashpot so that the mass will return
to its rest position as quickly as possible after a perturbation. By
adjusting the dashpot, the mass may be caused to return to its rest
position as rapidly as possible without oscillation. The system is
then said to be critically damped. The engineer may decide that the
spring force on m is -kx for a k > 0 which can be measured to
perhaps three significant figures. An investigation of the friction
forces of the fluid in the dashpot might confirm that the friction 4
forces on m can be approximated by -dx for a constant d > 0k
which can again be measured to a few figures. Finally the mass itself

can be measured.
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spring constant kK

mass m

friction coefficient d

Figure I.3.
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A damped harmonic oscillator.
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Then the mathematical model corresponding to the stated physical

assumptions is that the restoring force on m is -kx - dx 0
mi+dx+kx = 0 ,

and x(0) = Xg and x(0) = vy are the initial conditions, The solu-

tions to such linear ordinary differential equations with constant

coefficients are usually linear combinations of exponentials ec+t
and ec't where c_ and c_ are the zeros c of the quadratic
polynomial
rm2+dc+k :
CLiE

If c, = c_ then the solutions are linear combinations of e ¥ and
tec+ . The quantity to be minimized is the maximum time constant for
the components of the solution. The time constant for eCt is defined
to be -1/Re ¢ which corresponds to the non-oscillatory, decaying

part of the motion of m. (The oscillatory part is governed by Imc.)
Then

i for d > Jamk ,
a4 d - YdZ-%mk
max(Re c,’Re c_) -
%?- for 0 <d < /8mk .

For d > 0 this is minimized by letting d2 = 4mk. In that case

C+ H C_.

Given m and k the engineer can compute an optimal d which
he can obtain approximately by adjusting the dashpot.
The engineer may then mass produce these assemblies. Of course

there will be variations within tolerances in m, k, and d. Some of

R
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the assemblies will probably exhibit oscillaLory motions when perturbed.
Then the question will arise: are these variations from unit to unit

due to the normal variation of components within tolerances, or is

there an error in the design, or in the claimed tolerances?

We can resolve this question by asking: given the polynomial ?

corresponding to one of the production units.
R N
ple) = ¢ + (e + () ,

is the nearest polynomial with a double Zero within the distance

allowed by the tolerances on (%) and (%)? If 84 s the tolerance

on (%) and A, the tolerance on (5& then we might measure pertur-

bations
q(c) = ac + 8
by

2 a2 B2
l I - ——— + — "
9 (Ad) (Ak)

Then if the distance to the nearest polynomial with a double zero were

less than 2 in this norm, the components would 1ikely be within
tolerance.

Suppose we have adjusted the assembly to be critically damped,

Then we may carefully measure m, k, and d. If we wanted to compute
the time constant from the data and the model, we would be wise to
incorporate a constraint in favor of double “eros in our polynomial
solver, for that constraint corresponds to a fact we know about the
physical system.

In contrast, if we carefully measured m k, and d on an

(unadjusted) assembly from the production 1ine, and we wished to
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compute the time constant, it would be folly to incorporate a con-

straint for a double zero in the polynomial solver. If we did we
would always think that the assembly was critically damped.

Even when the assembly is at or near critical damping, where
small changes in m, d, or k produce Targe changes in c,6 or c_,
such small changes produce only small changes in the solution of the
differential equation, measured in an appropriate norm, That is, an
important feature of the physical system is well conditioned., We
encounter i11 conditioning numerically because we choose to think of
the solution of the equation as a sum of exponentials, As a conse-
quence of this point of view we then solve a polynomial equation to
find the time constants of the exponentials. Solving the polynomial
equation is the step that may be i11 conditioned.

Similar mechanical problems are used as examples in the text of
Carnahan, Luther, and Wilkes [4, exercises 4.23-4.26 and example 3.1].
There the natural circular vibrational frequencies of mechanical
systems with several components are computed. These frequencies are
obtained from eigenvalues of symmetric matrices. " i1tiple eigenvalues
merely mean that two different modes of circular vibration happen to
have the same frequency because of chance or some physical symmetry.
Viewed as an eigenvalue problem, eigenvalues of symmetric matrices are
always well conditioned [5]. An inappropriate reformulation of an
eigenvalue problem as a polynomial problem is responsible for the 111
conditioned zeros Carnahan et al obtain in some of the numerical

results given in their example 3.1,
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7. What Do We Do With the Explanation?

Once the nearest polynomial has been found which "explains" some
i11 conditioned problem, what should be done next?

If we just substitute the zeros of the ameliorated or regularized
polynomial for the zeros of the original polynomial, we may be guilty
of covering up important features of the problem,

One way to investigate those features is to answer the following
question: How do the zeros of the polynomial vary when the coeffi-
cients of the polynomial vary within their respective uncertainties?
When all zeros are well conditioned this question is easily answered
by expressing changes in the zeros as a Taylor series in changes in
the polynomial, of which only the first term or two are needed because
the series converges quickly.

In the interesting case, however, we find that a conventional
Taylor series approach will not work for i11 conditioned zeros, The
radius of convergence of the series never exceeds the distance to the
nearest polynomial with a multiple zero. If we actually move to that
nearest polynomial, we then find that conventional fractional power
series expansion methods still tend to founder because of short radii
of convergence.

In chapter VII these problems are discussed and a method is pro-
posed for obtaining expansions for changes in zeros that converge in
a much larger region than conventional techniques. The proposed
method depends on using the nearest well conditioned polynomial as a
starting point for an expansion in two phases. The first phase retains
the multiplicity structure of the starting point while the second
phase continues in & conventional manner. Thus the symbolic




determination of a series expansion depends on numerical means for
determining the most suitable starting point, Most of the difficulty
of the problem is in the numerical part. Analytical difficulties
preclude getting the actual expansions, but the idea may be used in a
very practical way to get bounds for the changes in the zeros as the
coefficients vary throughout the entire region of interest. Smith

[42] explains how Gerschgorin circles may also be exploited to obtain

similar bounds,




8. Survey of Previqus Results

Prior to the computer era relatively 1ittle attention was devoted
to the problem of i11 conditioned simple zeros beyond recognizing that
small perturbations tended to break up multiple zeros into i1l condi-
tioned simple zeros. Thus the multiple zeros themselves were usually
unfairly considered to be i11 conditioned. The behavior of multiple
zeros under perturbation has long been a matter of interest to analysts
and algebraists; the fractional power series discussed in chapter VII
have been known since the eighteenth century.

Another facet of muitiple zeros is their effect on convergence of
zero finding algorithms. It has long been known, for instance, that
the convergence of Newton's method is only Tinear in the vicinity of a
muitiple zero. Consequently much effort has been expended in develop-
ing zero finding iterations that perform better near multiple zeros,
Such methods have been discussed by Traub [33] and Ostrowski [25],
among others; Stewart's is a recent example of such work [32].

James Daniel [7] has recently studied the problem of improving
approximations to multiple zeros. He suggests that averages of clus-
tered i11 conditioned simple zeros may be taken to determine the
multiple zero of which they are apparently approximations, The exam-
ples he cites show that his suggestion may sometimes be helpful for
double zeros and perhaps for higher multiplicities if accuracy require-
ments are not very stringent. Daniel's work has not been incorporated
in any widely available codes for polynomial zeros. The reason may be
that a conventional zero-finding code with deflation would, in the
vicinity of an m-tuple zero, find first an 111 conditioned member of

an m-member cluster. Then it would find an i11 conditioned member of




an m-1-member cluster caused by perturbina an m-1-tuple zero which is
not the same as the m-tuple zero of the original problem. Then the m
i11 conditioned zeros that are averaged together at the end are not
all perturbations of the same multiple zero and consequently this
average does not make a very good estimate of any multiple zero.

To J. Wilkinson [34] must go credit for publicizing the fact that
111 condition and apparent clustering are not equivalent characteris-
tics of zeros of polynomials. This fact does not seem to be explicitly
recognized previous to Wilkinson's work. The polynomials he chose as
examples are still being studied profitably as in chapter X of the
present work. |

Wilkinson also brought to the attention of many readers the facts
that condition could not only be rigorously defined but could be mea-
sured as well,

In 1975 Dunaway [8] proposed a different method for dealing with
polynomials with multiple zeros. Her work is based on the fact that
the greatest common divisor (GCD) of such a polynomial and its deri-
vative is a polynomial whose factors are the multiple zeros of the
original polynomial, but of multiplicity one less. GCD algorithms
have long been used for studying polynomials whose coefficients are
exactly known. Recent work by Collins [5] and others has been in the
context of symbolic algebra systems employing exact rational arithmetic.

Dunaway's idea was to implement a traditional GCD algorithm in
standard finite precision floating point arithmetic. There the key
problem is determining when a term in a polynomial remainder sequence
may be considered to vanish, indicating that an approximate GCD has
been found. As Dunaway remarks, that is a difficult problem in finite
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precision arithmetic. She does not give details as to how she resolved
jt, and it is not clear that her procedure could be automated. If

that were possible, it might be an attractive method for investigating
the multiplicity structure of the zeros of polynomials without speci-
fying that structure in advance, In contrast, the methods to be pre-
sented in subsequent chapters require that one specific structure be
investigated at a time -- one double zero, a triple zero, two double
zeros, etc.

The present investigation is based on the work of W. Kahan
described in [17]. Kahan displayed the connection between i11 condi-
tion and nearness to the manifold of polynomials with multiple zeros.
In [17] and also in [19] he determined how to compute condition numbers
and how to derive the equations to be solved for the nearest polynomial
with a double or triple zero. He also perceived that the manifolds
could be exploited to provide a better way to express perturbed zeros
as an expansion in terms of the perturbation.

Kahan went as far as theory unaided by extensive computational
experience could be expected to go; this dissertation supplies some of
that computational experience and some of the theoretical extensions

motivated by that experience.




9., Summary of Findings

- The principal original results of this research are:

1) A new method for computing condition numbers for zeros of

polynomials, valid for certain norms only, is presented in chapter II.

2) The equations to be solved for the nearest polynomial with
two complex conjugate double zeros, two double zeros, and three or
more double zeros are presented in chapters IV and V.

3) When k complex multiple zeros are sought, the equations
that need to be solved are less complicated than might have been
thought at first. It is skown that k Lagrange multipliers may be
assumed to vanish for any interesting solutions. This result, pre-
viously known [19] for the case of a single multiple zero, has been
extended to the case of several multiple zeros and the case of a com-
plex conjugate pair of multiple zeros in chapters IV and V. But a
counterexample has been discovered which indicates that, in the most
common case of a real polynomial subject only to real perturbations,
these results are not always applicable.

4) Some results on the location of the nearest polynomial with
a double zero are given in chapter VI.

5) The details of a new technique for bounding changes in the
zeros of a polynomial are presented in chapter VII. This technique,
originally suggested by W. Kahan, exploits nearby manifolds of poly-
nomials with multiple zeros whereas conventional techniques are
usually hindered by the presence of those same manifolds,

6) Extensive computer codes of methods presented in earlier
chapters were prepared to test the theory experimentally. In chapter

IX examples are given of successful application of these codes.
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7)  Extensive computer resuylts are given in chapter X to support
the conclusion that one polynomial mentioned by Wilkinson [34] is
intrinsically not amenable to treatment of the type proposed in the
previous section, due to its position near a particularly complicated

part of the manifold of polynomials with double zeros.

29




10. MNotation

In the following chapters we will consider perturbations of monic \
algebraic polynomials p, of degree n, with real or complex coeffi-
cients: X

p(r) = " + jg_pj'rn'j .
]

We will usually follow the conventions of using lower case Greek
letters for scalars, lower case Romen letters other than i through
n for vectors and polynomials, and capital Roman letters for matrices,
non-1inear operators on vectors, and sometimes for functions. But pj

and A f

i3 will usually represent scalar elements of p and A. R

and C" represent the real and complex vector spaces of dimension n.
The perturbations will be polynomials of degree at most n-1,

not usually monic:
q(r) = n-J
J

147

nes-13

We identify the space of perturbations q of a polynomial p with a

vector space of dimension n and, in the obvious basis
{Tn-],Tn-z,...,T,]} .
the elements of the vectors are the coefficients of the polynomials:

%

q, n s
a=| £ ~al) = Jaa"™d.

. .=]

Any norm for R" or C" may now be imposed. We will be interested

in a weighted 22 normon " defined by




3

*ug) 172 = '/2q)

bat, = (q i,

where q* denotes conjugate transpose and W is Hermitian positive

[

definite and usually diagonal as well. In the diagonal case we write

: 2
Iql,, = J Y welasl© .
W 321 J J

There is a dual space of functionals u* which has the usual

norm
*
nu*nw = sup _[iu_'g_]_ = (u*w-'lu)'|/2 A

q *aly
or

n

Z Iujlzle

a=

in the diagonal case. Most often the functional we are interested in

is ez*, the functional that evaluates a polynomial q at z:

eK*q = q(z). In our basis ez* = (¢

One frequently used operator is the derivative operator D which

=102 2 7).

maps c" to " and has the matrix form

We can for instance write e *Dk

v 4
the k'th derivative of a polynomial at 7. In fact we will often be

for the functional which evaluates

interested in the operator which computes a polynomial and its first

. < S SR
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m-1 derivatives at r. We will define it as

{ *
e, }
e *D
A, = 5 m
.* m']
L&
| ——
n
S0
q(z)
Acq =

q(m-] ) (z)

Corresponding operators D and A can be defined for polynomials of
degree n; their matrices operate on vectors of dimension n+1.
Then

p(z)

Ap = :
4 "
p( ])(c)

RC is m by (n+).

It is handy to note here that the m rows of Ac are independent
for m< n. For if we apply Ac to the vector q representing

('r-c)k we find

-’

Ags= +— position k+1 .

O cOo0ZTO*r O

By letting k run from 0 to m-1 we find that the rank of Ac

is indeed m.
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Frequently we will be using £ as a symbol for a multiple zero
of a nearby polynomial and o wil] be a symbol for a zero of the

original polynomial. We will write e* for e * and A for AC'

In chapters II and VII, however, A will be an m-] by n matrix

*nM=2
€y D

Those chapters also use the n by n-m+1 matrix

( ] _ '0 ]
(m-1)(-a)
: . ]
P = . (m-1)(-a)
-1
T :
\ 0 g (_a)m-] J

Muliinlying an n-m+1 vector q by Pm-] corresponds to multiplying

a polynomial of degree n-m, gq(1), by (t-a)m']. The columns of

Pm-] are linearly independent since (Tfa)m-IQ(T) £0 if q#0.

When presenting numerical results we will often use FORTRAN
E-format, e.g,

123E-5 means .123x10"5

33




e Lot bles

CHAPTER II
COMPUTING CONDITION NUMBERS FOR ZEROS OF POLYNOMIALS

1. Definition of Condition Numbers for Simple Zeros

In this chapter we explain several ways to compute condition
numbers for zeros of polynomials. In the last section we see why i1}
condition is always associated with nearness to a polynomial with one
or more double zeros.

Condition numbers are intended to be a numerical measurement of
condition. They tell us how large a change in the solution may result
from a given change in the data. In general, for a problem which con-
verts m input data items di into n components of a so;gtion sj,
there could be nm condition numbers Yij = |P1j|, rij S 5313 and
the condition of the problem could be defined to be a norm of the
matrix of rij' If there is a norm l-lS defined on the solution and
2 norm l-lD defined on the data, then the most suitable norm for T,

the matrix of ri is

J"

irdls
I™l = su .
s dp[-m-—o)

One could just as well consider relative condition numbers,

Yig %H;%

as long as sj ¢ 0.

For our purposes we will generally consider a separate condition
number for each zero of a polynomial but we will lump together changes

in the coefficients and measure the combined change by means of a norm.

34
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Let p be a monic polynomial of degree n,

n 3
plr) ="+ Jp Y,

j=1

and iet 6p be a perturbing polynomial of degree n-1, not neces-

sarily monic, representing a change in the coefficients:
n .
sp(t) = ] ép I
=19

Let o be a zero of p(t) and a+da a zero of p(t)+6p(t).

Definition. The (absolute) condition number, y, of a with

respect to changes &p is

(1.1) y = 1im sup %%ﬁ+ .
A+0(sp with]
ispl =A

As we have seen, this 1imit is infinite for multiple zeros o, a

defect which we shall remedy shortly.

There is one aspect of i11 condition of zeros of polynomials
that may surprise those accustomed to thinking of i11 condition pri-
marily in terms of systems of linear equations. In that context norms
are usually chosen in such a way that the condition number of a matrix
with respect to inversion is never less than 1. There is no such
natural choice of norms for zeros of polynomials and their condition
numbers may take on any positive value. We shall see in chapters IX

and X that well conditioned zeros can be very well conditioned indeed:
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in a certain reasonable norm, the condition number of one of the zeros

of Wilkinson's polynomial is about 1.E-16,

Qur definition of condition and condition number is similar to

that of Wilkinson [34], and is also a special case of a more general

formulation proposed by Rice [27]. Both Rice and Wilkinson also pro-

pose relative condition numbers which we would define as

y

Yrel = Tl

for a# 0. In this case we would choose a norm for &p which would

measure relative changes in the coefficients. An example is

n o 6p.12y1/2
iépl = [ ) '-‘l| ]
j=11 Py !

if all pj # 0. Other norms can be devised suitable for the case when

some pj is zero. It is the responsibility of the definer of a pro-

blem to decide the appropriate norm. For instance, if none of the

zeros of p are 0, then the polynomial p(t), whose positive zeros
are the moduli of the zeros of p, may be used to define a norm:

ispl = [jgl

—p—

Gpj 2]]/2 .

P

None of the Bj are 0 as long as p_¥ 0.
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2. Definition of Condition Numbers for Multiple Zeros

The previous discussion shows that our definition of condition
number does not make sense for a multiple zero, which would apparently
have an infinite condition number. That infinite condition is caused
by the fact that most arbitrary infinitesimal perturbations applied to
a polynomial with a multiple zero tend to break up that multiple zero
into i1l conditioned simple zeros.

In order to have a sensible definition of condition number
for a multiple zero we must only allow perturbations which do not
destroy the multiple zero. Here is an example: consfder a real monic

cubic polynomial,

3. (2048)1° + (208+0%)1 - %8

p(r) = (r-0)%(x-8)
and small quadratic perturbations,
q(t) = q]rz+qzr+q3 .
which preserve the multiplicity of a so that
p(r) +q(t) = (1 - (a*e)) (1 - (8+0)) .

We discover that

q * 2e + 0 .
q, * 20e + 28 + 200 + (259-+ez) ’
a3 * 2aRe + aze + (Zase-+Bez-+eze) "

where the parentheses segregate higher order terms which we shall
ignore. Thus the three parameters q; are defined in terms of the

two variables € and 6. We can choose any two of the q; as the
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independent parameters of the perturbation and solve for ¢ in terms

of them. Thus if we choose a and 9,, we find

€= (qz-aq] )/(2(8‘0.))
and

6 = (Bq]-qz)/(B-a)

to first order in ¢ and 8.,

Then we can see that the ratio of change in solution (e) to change

in data (q]) is

which will be well defined unless B = a, which would mean that the

multiplicity of o was not two, as we thought, but actually three,

In general let

P(t) = (1-a)"a(t) ,  qla) f 0.

Definition. The condition number of o is

multiplicity of o

(2.1) y = lim sup *§9+ .
4+0(over &p maintaining] P
with 16pl = 4

In order to appreciate graphically what is meant by constraining
perturbations to maintain multiplicity, consider the drawings in
Figures I11.1-11.3 of the space of monic real cubic Polynomials., That
space is three dimensional and the set of small perturbations about a

point in that space is a closed ball. The drawings are based on a

norm in which closed balls look like spheres; see Figure 11.1,

38
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The set of monic real cubic polynomials with double zeros is a
two dimensional algebraic surface (manifold). The set of small per-

turbations maintaining multiplicity of a double zero is the intersec-

tion of the ball and that manifold. If the manifold were a plane that
set might be an oval. In general that set resembles a bent coin or
an ellipse warped into three dimensions; see Figure II.2.

The double zero is well behaved in the face of perturbations that
keep the polynomial on the manifold but away from the one dimensional
submanifold of real cubic polynomials with a triple zero. That sub-
manifold is an algebraic curve and a subset of the surface mentioned
previously. The set of small perturbations maintaining a triple zero
is the intersection of the ball and that curve -- amounting to a seg-

ment of the curve, as in Figure II.3.
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< ball

Figure II.1. A small ball about p in R3 containing pertur-
bations &p such that 1spl < A,

\ surface of polynomials
S with double zeros

\ball
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Figure I1.2, The set of small perturbations about ]

maintaining a double zero resembles a
bent coin.




curve
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Figure 11.3. The set of small perturbations about p
maintaining a triple zero is a segment
of a curve.
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3. Condition Numbers for n-tuple Zeros

As a start we derive a condition number for the simplest case,

that of a single n-tuple zero. When the polynomial has the form

n .
p(1) = (t-0)" = 1"+ Z1pjtn'J ,
where

n!

In-J7037 »

= n - j n
then &p has the form

sp(1) = (t- (a*6a))" - (1-a)"

- E (g){(-a-éa)j - (~a)dy™d
j=1

n
= (-Ga)jZI(g)°3°(-a)j'11"'j to first order .

Then, recognizing an expression for (T-a)"'],

|8a) ] |al
Y = sup = _—T_- = .
ép WP ()™ ) l g jp TH-JI
g1

In particular for the diagonal W norms

“r la)

T
q‘jz]wj'j '|pj|

except if a =0,
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4. Resolution of Condition Number into Components

We show now that the condition number we have defined is a product

of two independent factors. Thus for the polynomial

n
p(r) = (t-a)" T (1-z,)
jeml Y

the condition number for o will be shown to be

Ly
m

n

m |a-z,|

j=m#l J

where the numerator o/m will depend on the zero a but not on the

other zeros Cj‘ The denominator depends on the other zeros cj but
not on m nor on the norm. We require that o # Cj so that m is

indeed the true multiplicity of a.

W. Kahan demonstrated this fact in [17] after showing that, for a
monic polynomial of degree n, an m-tuple zero may be regarded as an
analytic function of the first n+1-m coefficients of that poly-
nomial. This may be compared to the well known result that a simple
zero is an analytic function of the n coefficients of a monic poly-
nomial. In both cases analyticity is confined to regions in which the
zero does not increase or decrease in multiplicity.

We shall infer the resolution of the condition number directly,

however. Let

and let &p represent infinitesimal variations in p such that

p+3p has a multiple zero ~+ v of multiplicity m. Then
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(p+sp) (1) = (t - (a*+sa))™ (q+sa)(7) ,
and in consequence, keeping only first order terms, we find
6p(1) = (t-0)™1{(r-a)6q(r) - ma(1)sa} .

Thus 6&p 1is displayed as a function of &q and da.

We claim
Sa| 1 1 [r{a)]
Y =} Sup H = SUp o 'Y
{constrained] sl m Talo]] [r of degree] Hrt-a)" ]-r(r)l
sp < n-m

and we prove it by showing the one-to-one correspondence between such

r and such &p. Namely let

r(t) = (t-a)sq(t) - mq(t)da

SO

sp(t) = (1-0)™Tr(1) .

Since &p has degree < n-1, r has degree < n-m. The dimension of
the vector r 1is n-m+l, however, since the polynomial r{t) is not
monic.

Any such r defines &p and hence &q uniquely:

So = ;n—r((g-%- . sq(1) = "(T):Tqa(T)Ga .

The numerator of the expression for 48q(t) does vanish when T = o
so that expression is indeed a polynomial rather than 2 -ational func-

tion. Therefore we may write

5 ]
]L6%+ - E T [r{a)]

Hr-a)™ r(1)]




n n
and, since q(t) = 1 (t-z.), then lq(a)| = T J|a-z.|.

As claimed, then, we may write the condition number for a as

]

2
(4.1) U

s
and
1 _ )| IY‘(G)I
4,2 m° m
(4.2) m° m(deéigz F]F(T-d)m-]r(T)l
< n-m

is the part of the condition number that is independent of the other
zeros Cj‘ The next few sections will be devoted to explaining how to

compute o.

(’" . "ﬁi !-w-" *{i‘.m e ‘ m 3 ".W“_‘ 4 ,!"?"J‘;r‘#‘»*‘ BE .ﬁ-; _4... i -, w -~ .-‘j-na.ﬂ- :"T SRR S A ARt
i
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5. Computing o for Aviitrary Norms -- Dual Method

W. Kahan [19] has provided the following method for computing o
in arbitrary norms. le shall see that it leads to solving a standard
kind of linear approximation problem, namely

g = min §s* +2*Ap/(m-1)1 ,
2*

for vectors s* and ‘* and a matrix A to be defined.

To prove the statement above, write the formula for o as

jebr] jetzsy |

o= sup e = sup S S

r of degree)“Pm-lr“ y of degree Pyt
<n-m < n-l

where y € " and S s a map from c" onto C"'m+1. Z is the

operator which fills out n-m+l-vectors with zeros to form n-vectors:

( 0 )
1
7= . 0] * N
0 .
\ 134
N
n-m+]

ZS 1is required to be a projector. Finally Pm_.l is the linear

operator from C"'m+] to c" mentioned in chapter I which represents

multiplication by (r-x)m'].

Our goal is to transform the sup problem into a dual min problem.
We therefore state a duality theorem of Buck [3]. The setting for the
theorem is a normed vector space E with its dual space of functionals

E*. If M is a subspace in E and M+ its annihilator in E*,
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the theorem states

= min My vl

sup
XEM Ix v* e ML 0

For the application at hand, E is " M= {Pm_]SylyeC"}. Then
M- = {v*|v*P__,S=0}. We discover

Ivo*pm_]Syl _ o
sup —“p———s—y-l'— = « min % u .
yel" m-1 (u Pro15= Vo pm_1s)

: q * * _ * E
Then if there is a Vo such that Yo Pm_]S = e ZS we will have the
sup we seek, expressed as a min,

Since the columns of Pm-] are linearly independent, the range

*

space of Fm-] must have full dimension so the equation

* = *
4 €y Pm_.I Vo may be solved for Vor Therefore

(5.1) o= min fu*t .
* = *
(u*p 1S =e_*I5)

Let us see what the solutions of u*P_ S =e *IS are; among
them we will find that of minimal norm. As in chapter I let Dk
denote the operator which maps polynomials to their k'th derivatives.

Then we find that

u* = ea*Dm'1/(m-1)!
is one solution of the equation. For consider any y(t) and let
r(t) be its image; r = Sy. Then

m-1
ea*D Pm_]r

W)™ () (™1 ()

(m-1)!r(a) = (m-])!ea*Zr .

AR P .
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The next step is to determine the solutions of the homogeneous
equation u*Pm_]S = 0. The rank of S is n-mtl, as is the rank of

P and therefore their product. Since u* has dimension n, the

m-1°
null space of (Pm_]S)* must have dimension m-1, Therefore we seek
a subspace of solutions u* of dimension m-1.

We may easily verify that {ea*,ea*D,...,ea*Dm'z} is a set of
oar = )™ e %)

=0 for 0< k <m-2. These m-1 1linearly independent solutions

solutions to u*P_ .S = 0, because e *D
m-1 a

therefore form a basis for the solution space and we may insert the
general solution of the inhomogeneous equation in the formula (5.1)

to get

-2
N ; m-1, ™ k
(5.2) g = G‘—_]—;,—n{ln iea*D +kzo)\kea*D I .
k

If we write the m-1 vector % = (Ap.2p,..00d »), the m-1 by n

matrix
ea* )
A= e“.*D .
ec:’"Dm'2 ‘
and the vector s* = ea*Dm'], we have
(5.3) o = min Is*+2*Al/(m-1)!

2*

Consequently o may be found by solving the indicated linear approxi-

mation problem, as claimed.




i

In the special case a=0 we find

o=f(0---0190.

n-m+1 position

- 0)f .
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6. Computing o for 22

Norms -- Dual Method

We now evaluate o for 22 norms. First we note that

utt, = jurw™ /2

“2 and, using the theory of least squares, the

minimal residual may be expressed as

Q
[}

{s*(W]

In particular, if m=
(6.1) = (e

If m=2, then A=

find

02 T—-E{Z(n

mzn gw‘

s+-w']/2A*2ﬂ / (m=1)1
W ax (aw Tax) Aw")s}‘/z/ (m-1)1 .
1 then A=0 and s = e, SO
|~ e )1/2 - [ Z I 2 n-J/ ]1/2 .

= D*e,, and after some computation we

_iY 12103 1 12
et 1o ™

J) Ia | =
Zlazln J/"’j

or in a computationally more economical form,

n-l

2 _ Jj=1

1, 2n-j=1, & 1, 2/n-k 2
=—la®| { =—la®|" " (k-3)°}
L k=§+1 W,

J

For m> 2,

1
o= min {
lnkli' k jzl J

This may be written in

n y
2(n=3 ,.
1 11"y

o gy Z S e klz i

conventional least squares format as




where

Finally, if a

o = min Hg-ﬁ*lnz/(m-l)!
L

o= (n=d)l  nejemHl,, 41

S = Ty o 1) 2
ax  _ (n-3)! n-j-k 1/2
SRR =
=0, then o =1/(w )]/2.

n+1-m

51
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7. Computing o for %, Norms -- Primal Method

In the previous section we computed o by solving the dual
problem. Our goa’ now is to find ¢ directly. First convert the

expression

o = sup |r (Q%I
f of degrej I(t-a €3]

< n-m

into the vector notation:

le *r|
o = Sup iﬁ——;Fw 2
m-
But if we define a new norm Hrﬂp = P e rl  then by definition
. *
of nea IP

in the dual norm. Now Irl, = I(P _])]/zrlz in our 2, norm so

m-1

(7.1) o

* * -1/2
Iea (Pm_] WP |2

m-l)
* -1 1/2
(ea*(Pm-l me-l) ea) .

We can check this result by comparison with the simplest case, m = 1,

Then P, =1 and

0

o = e, w1 e,

" M:

|n'j/wj

which is just the result obtained in the previous section.




i

8. Computational Details

We shall see how to compute the non-zero elements of Pm_1*wP
Let P denote a generalized matrix of the Pm_1 type corresponding

to multiplication by a monic polynomial t(t) of degree d, For
instance, if m= 3, P2 corresponds to (r-a)2 = 12 -2aT'+a2. Then
t0 2 P t1 = -20, and t2 = a2 are the elements of t. P has the

form of an n by n-d matrix

(1 0 )
Ty
. ‘ t
tg . )
Lo th
o)
i ti-j if j<igjdd,
R 0 otherwise
Then

k=min(i,j) o
wt, %t . if li-j] <d ,
kemax(i,j) © k-1 k-] =
(P*NP)ij =
0 otherwise ,

so this matrix has bandwidth 2d+1 in addition to being positive

definite Hermitian.

m=-1"

]
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9. Condition Numbers for Complex Conjugate Zeros of Real Polynomials

The formulas derived in the previous sections were valid for
complex zeros of a complex polynomial subject to complex perturbations.
It is easy to verify that the same formulas apply for real zeros of a

real polynomial subject to real perturbations. The case of complex

zeros of a real polynomial subject to real perturbations, however, is
more complicated. The requirement that the perturbed polynomial

remain real amounts to an extra constraint. We now define condition

numbers that reflect this constraint. Let

p(t) = (t-0)™1-3)"q(1) , qla) # 0,

represent a real polynomial with a complex m-tuple zero at o« and

consequently at a as well, with Ima # 0. Considering infinitesimal

perturbations we define

(p+sp) (1) = (1 - (a+sa))™(1 - (a+5a))"(q+6q) (1)
and to first order we find
ép(t) = (T-a)m'](T-&)m'][(T-a)(T-&)Gq(r)-qu(T){(Re 6a)t - Re(asda)}]

Definition. The condition number of a with respect to real

perturbations of p 1is

(9.1) y = lim sup {%EJr
2+0 konstrained sp '°P
{with 16pl =4
Let

r(t) = (t-a)(1-a)8q{1) - 2mq(t){(Re éa)t - Re(asda)}

-
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Then real 6&q and complex &a define r uniquely. Conversely,

sa = (V=T r(a))/(2m(Im a)q(a))

and

_ r(t) +2mq(t){(Re 8a)T - Re(ada)}
8q(r) = (T-af(rfgir B

As before we can verify that the expression for &q defines a poly-
romial rather than a rational function.
Thus there is a one-to-one correspondence between r and

(8a,8q). Substituting in (9.1) we find

TR - R o s MRS chn i IR s R e M+ <Lt pho B

e 1 S |Y‘((1)l
Zn[Tn o] TqtalT r of dégretj N(-a)™ ! (2-3)™ (1))
< n-2m+
or
{ :
{ (9.2) Y * Znltn ol Tala)] %

Thus in this case as; well, the condition number consists of (1) a numera-

—Surit....

tor oc/(ZmIIm a]) independent of the other zeros Ty» and

i

n
(2) a denominator |q(a)] = T Ia-cjl.
j=em+ .
The 1imit Ima + 0 corresponds to o and a coalescing to
form a zero of greater multiplicity 2m. Therefore the condition

number becomes infinite as Ima -+ 0.

. AP NPT o 5. R .
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10. Computing o_ fog_&e_ﬂgrgi

We turn now to the problem of computing o_. by a method similar

n-2m+2

c
to the primal method for computing o. Define Cm—] mapping R

into R" as the operator corresponding to multiplication by
(T-a)m'](T-&)m'] for complex o. Then in matrix form, C] for

instance is n by n-2:

( -I 0 3
-2Rea )
C] = |a|2 : 1 .
! -2Rea
(0 lal? |

Consequently

2 r¥e e *r
2 _ r(a - aa
Oc = SUP 7 - SUWP ST W v

rolc vl ro " im-l "omel

As before cm_]*wcm_1 is real symmetric positive definite so

(Cy*Mc_ )71/2 exists. Ve find that

. 172 /2,
S S D, "l S L

A*A
c r . rer

The supremum is over real r but the matrix eaea* is complex so a
Rayleigh quotient argument does not apply directly. Instead write

et = ur+ivy where

u* = Re(e *) [Re(an°]) +++ Rea 1)

and

v = Im(e *) [Im(an']) v Ima 0) .
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Then observe that for any real s,
* * = S* uu* + * 5
s*e e *s ( VV*)s

Applying the Rayleigh quotient thecrem now we find

ocz = max eigenva]ue[(cm_]*wcm_])']/Z(uu*+vv*)(Cm_]*wcm_])']/2]
= max eigenvalue[xx* +yy*]
where
. -1/2
x=(C e )74,
= -1/2
y-= (cm_]*wcm_]) vV .

A rank two matrix has two positive eigenvalues which can be found
by reduction to a matrix of dimension two. For an eigenvalue X and

an eigenvector (8x+¢y),

(6x +¢y) = (xx*+yy*)(ex +¢y) .

PN

and X is an eigenvalue of the indicated two by two matrix. The

Therefore

largest eigenvaiue of that matrix is

(10.1) A .

= 3(ex e yry+ (Ooneyry) 8 1xey | 2)1)

N —

where
x*x = u*(C_\*WC LJu
xty = u*(C_{*WC i)v ,

etc. Then
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2 _
(10.2) o, = lmax
and
'Amax
(10.3)

Yo © Zn[Im o] q(a)T

What does this result mean in the case m = 1? For comparison, suppose

we computed the condition number vy of the same complex o using the

general formula for complex polynomials (4.1, 6.1). The result is

y = /ea*w'1ea/ (2m]Im | [q(a)]) .

To compute o, note that x*x = u*w'1u. etc., and

R TIPS B V7
max Z(ea*w e, 4 )

where A = (x*x-—y*y)2-+4|x*y|2. From the Cauchy-Schwartz inequality
we can deduce that

(em*\ai'1em)2 = (x*x + y¥y)? >4>0,

and consequently

1

1 "1 eld”
-2-(ea*|rl eu) hd >‘m <& W €

ax

Then we find that

(10.4) 1< viy, < /2

for m=1.

When m > 1, however, the discrepancy between these condition

numbers can be much greater. In fact, as Ima - 0 for fixed Re a

and m > 2, y/yc increases without bound. The condition numbers

differ because y maintains the multiplicity of only one zero intact
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“but Y, maintains intact the multiplicities of two cros,

Computational Details for g_
’c

The computation of O, is similar to that of o, except the

matrix Cpo1 Corresponds to multiplication by t(1) = (T-a)m'](r-&)m']

a polynomial of degree d = 2m-2. Then Cm-l is n by n-2m+2, and

kemin(i,j)+d

. :
k=ma£%i.j) "k k- tk-j > 1i-3] < d

(Cope 1) =

0 otherwise .

S e L ARE T e

A
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11. General Condition Numbers

The first condition numbers we considered reflected the condition
of a zero subject to infinitesimal perturbations that maintain the
multiplicity of (only) that zero. The second condition numbers
reflected condition with respect to perturbations that maintain the
multiplicity of that zero and its complex conjugate. We can go fur-
ther, restricting the class of allowable perturbations to those that
maintain whatever multiplicity structure we consider important in the
other zeros.

For instance, let

K m
I (ea) ¥a(e)

p(t) = [k=1

where

Q(ak)foa ]_<_k_<_Ka
and we consider only perturbations of the form

K mk
(p+sp)(t) = kI_I](r- (o, +60, ) “(q+8q) (1)

so that

_ m-1
sp(x) = [1(r-g,) ]{[E(T'ak)]6Q(T)"Q(T)E(mksakjgk(T'aj))} .

In the usual way define the condition number y of a with respect

to such constrained perturbations to find that

Tl b L . sup K Ir{a)] \ .
egr< m, -
nlaley)] T loy-ay] L-l-z(mk-n]l[kg](r-ak) <ol
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In the 12 case we can write the sup as

where G is the operator corresponding to multiplication by

-1 1 m,,~1

m . My~
1 Sy 2
(T-a1) (T-az) ---(T-aK) K
Then as before, in the case of complex perturbations of a complex

polynomial,

cGz = e*(G*WG)'1e

where

= (o N1 _n2
ex = (a1 oy o T

The case of real perturbations of a real polynomial with real oy is

similar. If oy is a complex zero of a real polynomial, however,

then one of the other o = &1, and
cGz = %(x*x +yry + {(x¥x-y*y)? + 4| x*y| 2}1/2) 5

where x*x = u*(G*NG)"u, y*y = v*(G*WG)"v, etc., as in the previous

section,
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12. Application of the Idea of General Condition Number
Let

p(t) = (1-0)"(7-a)"g(1)

be a real polynomial with complex a. We have defined Yer the con-
dition of o with respect to real changes which maintain conjugate
m-tuple zeros a+8a and a+38a. We want to compare Ye to Yos

the condition of o with respect to complex changes that maintain

m-tuple zeros a+da and a+6B, So and 8B are no longer neces-

sarily complex conjugate.

We have seen that

Ye T Zm[Im JHQ(aﬂ ]E V4’(""'3/*5"“'/(X*X-)/*)/)Z““IX*)IIZ

where x*x = u*(Cm_]*NCm_])']u, u* =

= Re(e,*), etc. C , corresponds
to (t-o)™ (r-a)™".

To compute Yps let

p(1) = (t-a)"(1-a)"q(1) .
Then

= 1 /e x(aug)”!
Y2 " Al Toal T M) e

where G also corresponds to (r-a)m'](t-&)m']. Since G=C_ .

- ] * *
Yo = [T o Tq(@)T "X XYY

and

{12.1) 1

e
1A
N

[KaY
(e}
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In contrast to (10.4), our present result is independent of m.
It means that the restriction to only real perturbations does not
affect the condition number by a very large factor compared to a con-
dition number that allows complex perturbations that maintain the

multiplicities of the same number of complex zeros.
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13. Condition Number vs., Distance to Submanifold

Now that we have a definition for condition number, we shall show
why i11 condition prompts us to look for the nearest polynomial with a

more multiple zero. Consider the polynomial
p(t) = (1-a)"g(1) .
Then the condition of o is

1
m? _ (m1)lo

YT Ta@T T gy

Consider the second polynomial

p(1) = (1-0)™(g(1)-q(a)) .

This polynomial has an m+l-tuple zero a. Further if

A= tp-pI = fqla)|0(t-0)™ ,

then
o1 (o)™

(13.1) A= =

That is, if n, m, a, and the norm are regarded as fixed, then i1l
condition (large y) always implies that there is a nearby polynomial
with an m+1-tuple zero. Furthermore, the closest such polynomial may
be much closer than the estimate above.

W. Kahan has suggested [17] that i11 condition may be explained
by exhibiting the nearest polynomial with a higher order zero. In the
vector space of polynomials with m-tuple zeros, that corresponds to

finding the closest point on the manifold of polynomials with m+1-tuple




zeros. If that m+l-tuple zero is still 11 conditioned, then there

must be a nearby polynomial on the submanifold of polynomials with

m+2-tuple zeros.

In the chapters that follow we shall describe ways of finding the

nearest polynomial with an m-tuple zero.
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CHAPTER TII
FINDING THE NEAREST POLYNOMIAL WITH AN m-TUPLE ZERO

1. Introduction

In the first chapter we discussed why we might wish to find the
nearest polynomial with an m-tuple zero. Now we will demonstrate how
to set up the equations to be solved. The problem amounts to a con-
strained optimization, and in general we find we must solve a non-
analytic equation in a complex variable.

We first consider the simplest cases of the problem: finding
the nearest real polynomial with an n-tuple zero or with a double zero.
Then we discuss the equations to be solved for the stationary
points which include the nearest compiex polynomial with an m-tuple
zero. Finally we explain two kinds of second derivatives which may

be used for deciding which stationary points are actually minima.
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2. The Nearest Polynomial with an n-tuple Zero

We will start by considering the simplest case -- that of finding

the nearest polynomial with an n-tuple zero. We suppose that we have

a monic polynomial

p(r) = 7" + _E

n-j
PsT
j=1 9

and we wish to find another polynomial

n Iy .
o) = (e=g)" = 2"+ ] QR () = gy

such that lIp-ql is a minimum.

Since

o oM
P-9=Ipy (j?(c)

L3

and depends only on § we can easily find the equation to be solved
for stationary points with respect to a given norm. We will demon-
strate the equation for the weighted 22 norms as follows:

: . 9 8 __
If we let the raised dot represent SReT or 5Tme we find
(lrl:) = r*Wr+ r*Wr = 2 Re (r*ur) .

For stationarity we require then Re(r*Wr) = 0. Thus

n
0= R MY Y MY foydel, 21)e:
ejz'l(pj (5)(-2) ) wj[ (§3-3-(-2)"" (1))

n .
- Re Lwpd (-0 o - (M09
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or

(2.1 (o) = jiwj-j(;.‘)(-c*)j" (- (M(-5) = 0.
f(z) is thus our first example of a non-analytic function of a
compiex variable Z. To find a zero would in general require solving
a system of two equations in two real variables.
In the most interesting case, however, we would be interested in
real perturbations q-p of a real polynomial p. If z were complex
then gq-p could not be real, so we need only consider cases for which

rz is real. Then the real function f(z) is

n s
(2.2) (z) = w]n(p1+nc)+cjzzwj-j(g)(-c)_J°2{(g)c2(-c)j'2-pj} .

We write f(z) 1in this way for comparison with the expression for

f'(c):

n
(2.3 £(0) =wn’+ T wpede (D02 (Dedad2a gy
j=2 ’

Then we may use Newton's method frqm a suitable starting point to find
a stationary point . f(z) 1is evidently a real polynomial of odd
degree 2n-1 so it does have at least one real zero. We shall see

later that even when n = 2 there may be more than one real zero. We

could in principle find all the zeros of f with a conventional poly-
nomial zero finding technique, but we would have to reject most of
those zeros as irrelevant since they would be complex.

In practice it appears that when Newton's method is started from

g = -p1/n. convergence occurs quickly to a stationary value which
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a.pears to be a reasonable candidate for a global minimum. This choice

of starting point makes sense because, when we consider
2 ey \D
p(t) = (1-g4)

+eq(1) for infinitesimal perturbations eq, the solu-

tion turns out to be [ = co-%eq] = - ﬁ% .

tven in the apparently simple case of finding the nearest n-tunle
zaro we encounter most of the characteristic difficulties of the more
complicated cases of m-tuple zeros for m < n, In the next sections
we will explore these cases in detail.
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3. The Nearest Polynomial with a Fixed Double Zero

In the present section we will solve the following problem: given

a real polynomial
p(r)=T+ZpT B
j=1

what is the least real perturbation

q(t) =

ne~13
0
~
3
[]
(]

j=19

such that p+q has a specified real double zero z? We wi]l measure

perturbations q by the familiar £, norms Iql2 q Wq {

E NN

Our problem is to minimize [lql_ subject to the constra1nts that

p(t) +q(1) = (T-C)ZP(T) for some r of degree n-2. Using the nota-

tions of the chapter on condition numbers, then, our problem is to find

r to minimize

_ qul/2 L y1/2
IPzr-plw = IW Pzrow pl2 .

Recall that P2 is the operator which multiplies polynomials of
degree n-2 by (r-c)z.

The solution of this linear least squares problem is
rs (N]/ZPZ) 172,
Then
-1
q = (P,(PoWP,)" P W -1)p .

Thus we can solve this problem by the usual least squares method.

But when we do not specify ¢ in advance that method is inapplicable
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since P2 now depends on 7. Therefore we will look at a dual formula-

tion of the problem that can easily be expanded when we allow 7 to
vary.

2
So now when we minimize lql

subject to (p+q)(z)
(p+q)'(zg) =

=0 and
0 we will apply Lagrange multipliers according to the con-

ventional formulation. Namely we will seek the stationary points of

n

o= T wla)?+ 2 (p(c) +alz)) + A (p'(2) +5' ()
j___1. J ] 0 |
noo
with respect to changes in q.. We note that q(z) = J a5t J 5o
: . 3=1
Eigiﬁll = g"J and ala'(z)) . (n-j)g"d U Thus
q. 9q,
J J
= _3_9_ = n-j -3 n-j-‘l
0 aqj zquJ’ +>\OC +)\](“ ilg
whence
A
. =) n-J .y, N=j-1 .0
qJ '—{zwj )\OC +>"|(“'J)c } » J<n and qn 2w

To determine Ao and A] we will use the constraints:

n-1 A
0 = (p+a)(z) = p(c)+(-%) 2 {;}-(xo(;z)“'jﬂ](n-j)c(cZ)n-:M]} '2‘»:2‘
n
0= (p+q)'(g) = p'(c)+(-—) i w]—( 0(n-j);(;z)“'i" +x](n-j)2(c2)n-3-l)_

The above may be written as a linear system of equations:
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[ n
1 ,.2.n-j3 1. i1 | ‘ ’
I (5™ e ] Lin-gedymi- ][ '
v jZ] s (n-3)(z°) X , p{7)
n-1 e
1, ov2mej-1 M=ly
g 1 - (n-g)(c8)md L (n-)2(g2)n-3-1

[ 0°2 8 S5y i p'le) )
and
J J 000_2-0_ [(O' ‘j)U])p(C) +;(-c]+(n-j)co)pl(c)} )
Then
(3.1)  qfx) = 2 '—{(o (n-j)o )o(;)4-;(-o +(n-3)o P ()

1‘°°2“ J_;anj

is the smallest perturbation moving p(t) to the manifold of polyno

mials having double zeros at t. The distance may be calculated to be

tat, = [20PLEN - 200008 (29 (00) + 0 cp (1)) 172

%°2 - °f J

The foregoing calculation is invalid when ¢z = 0, In that case

9, ; "Ppr Q41 ® -Pppr 2nd 9 = 0, 1<3J<n-2.
taty = v y(p, 24w (p )2
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4. The Nearest Polynomial with a NDouble Zero

After the comp]icéted expressions of the previous section, one
woul': expect worse from the following péﬁb]em: given real p, find
real q such that p+q has a real double zero z not fixed in
advance, so that ¢ may vary. The final expressions to be derived
are surprisingly simple, however,

We could solve this problem by differentiating with respect to ¢z
the final expression for nqﬂs of the previous section. It will be
more enlightening, however, to make a fresh start. The direct linear
least squares solution method won't work now, and we must solve the
problem with Lagrange multipliers. Thus we seek the stationary points

of

Z W (q e olP+a)(z) + 2, (p+a)'(z)

with respect to variations in 9 and z. Then as before

2 = 2uyqy 4 hgE" #ay ()T

0= aq i) 0

but now, in addition,
0 --—- = Ag{p*a) ' (z) +2, (p+a)"(z) .
We exploit the constraint (p+q)'(z) = 0 to see that
0 = 1, (p+q)"(z) .

Remarkably enough, either one of the Lagrange multipliers is identi-
cally zevu or else the unknown ¢ 1is not only a double but a triple

zero of p+q. It turns out that stationary points with (p+q)"(z) = 0
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and l‘ # 0 are almost never minima; csee section 9. Accepting that

assertion for the time being, assume A‘ = 0. Then

=1, .n-j
95 = 2 Al 7

From the constraint (p+q)(c) = 0, we find

1 n
p(C) = '2‘)‘0 Z

SO

and

n .
q(t) = :%él ) WL SR
g 328 73

We still don't know 7, but we can exploit the constraint

(ptq)'(z) = 0 to find

1 : | |

E p'(z) = T q:(n-j)g"d77 = zR{E)y (nody n-d4n-j-1
Ts j:] J co wj

'g und

% nal g B

i , . (j;gJ(C -

i (4.1) & ol W O |

‘% plc % Ny 2 neg

“' I (Heh)

A 51 %3

is the equation to be solved for ¢. Apparently it could be writt:.~

as a polynomial equation of degree 3n-2. We will devote several sec-

tions to discussions of ways to solve this equation. Let it suffice
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to say that when p is real, the equation always has a solution

t =0, and when n > 2 is even and Pn-1 # 0 it always has at least

one other real solution as well.

Once a solution g has been found, the corresponding distance is

2 p(e)] _ Jep' ()]
gl = = /c?o'.
w /OT('J‘ 0]

There are usually several real solutions ¢ and, surprisingly, most

of them are local minima, rather than maxima or saddle points. It

turns out that the maxima are usually the stationary points with
(p+q)"(z) = 0. A difficult, unsolved problem is to find the ¢
corresponding to a global minimum of (gt without having to find all
the solutions z.

LUl
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8.  The Nearest Polynomial with s Fixed m-tuple Zero

Using the notation of Chapter I we will now show how to find the

nearest polynomial with an m-tuple zero 7. We wish to minimize

Hqﬂs = q*Wg subject to Ap+Aq = O.

We may find the linear least squares solution directly, The

]/Zq of least Euclidean norm solving (Aw']/z)(w]/zq) = -Ap

vector W
is just (w]/zq) = (AW']/Z)?(-RP). where T denotes pseudo inverse.

Since A has more columns than rows, and the rows are linearly

independent,

(R L (Y S L
whence
(5.1) q = -0 A a5
Consequently

bat,, = ((Rp)*(an~'a%)"YAp) /2

To compare this with our earlier results for real double zeros, we let

m=2 and recall that when m = 2,

SO

eWle oW

e p*e
T S . 3 :
e* W 'e  e*DW 'D¥e

We can derive expressions for the matrix elements in terms of the
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(n-3)%| 2n-3
1 W, g

o
. J

It
ne~13

J

Notice that this is a redefinition of the Oy replacing the previous

n(n.k :
-3) (,2yn=]

1 by

definition which is not suitable for complex z.
=t 7J
Then
e*W']e = 9, -
e*DW e = %o] = (e TD%e)* ,
e* DU D%e = —g :
ICIZ 2
Therefore
' 2 |, F0
BTV i 1 i Tt .
Ona0n-0 -1
07271 50 o
and
2 * ] [} 2
) o,|p(z)|*-20,Re(p*(z)zp (z))+o,izp' (2)] 12
fal, = [ ]

4
0492 = 91

Apparently the major difference between the previous real case and the
present complex case is that expressions like (6)2 have been replaced
by expressions 1ike |e|2. The effect of this change will be that the
equations to be solved for g, when it is not fixed in advance, will

no longer be analytic.
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6. The Nearest Polynomial with an m-tuple Zero, No Longer Fixed

Our problem appears similar to that in a previous section: mini-

mize anw subject to ﬂp-+Aq'= 0. The difference is that the ¢ on
which A and A depend is no longer fixed, and a linear least squares

theory is no longer applicable. As we have just seen, if we do hold ¢

fixed, we can write q as a non-analytic function of 7. Therefore

we can find a directional derivative of q if we think of ¢ as a

function of a real parameter 6: [ = c0-+ei. Then g%—= z and if
v = q*Wq

then

_d% = v = q*Hg+ q*Wq = 2 Re (q*Wq)

since W is constant. At a stationary point of v we would require

v =0 forall q, including that particular one which makes q*Wq

real. From that case we conclude that
0 = q*Wq

is the condition for stationarity.

But q 1is constrained in the values it may take. When we dif-
ferentiate that constraint we find Ap+Aa+Aq = 0.
(e*) = (...(;ﬁlj)...} = (...(nmj);"‘j']&...] =

Since

e*Dz, we conclude that
A = AD;. Therefore the constraint on q and ¢ is (ADp+ADq)Z+Aq = O.

The idea of constrained optimization is that every pair (q,z)
which satisfies the constraint should also satisfy the stationarity
property, i.e., in the notation of the Lagrange multiplier theorem

(Appendix 6),

Bx=0 = y*x=0,
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where .
o
X = |-2- '
g
B = (A ADp+ADq)
and y* = (q*W i 0) .

The Lagrange multiplier theorem just cited assures us that y may
be written y = B*2 for some vector % of Lagrange multipliers. For

convenience we will write

Then

(6.1)
0

But since I~\p+Aq = 0 is the constraint, (ADp+ADQ)*L =0 =

A*
SR L
(ADp+ADq)*

[(p+q)(m)(;)]*2m_] = 0 and we are therefore faced with the two possi-
bilities we saw in the m = 2 case: either the last Lagrange multi-
plier is zero, or the zero ¢ has one higher multiplicity than we had
planned. By examining the second derivative V 1in a subsequent sec-
tion we will find that stationary points with extra multiplicity
corresponding to minima of v always have zm_] = 0. Therefore we may
always assume that zm_] = 0 at interesting stationary points.

1

Continuing we find Wq = A*2 so q = W A*L, Then the constraint

implies (AN']A*)Q = -Ap. Although AW TAx s Hermitian positive

definite and therefore invertible, we would find that £ would not

m-1
come out to be zero except for certain special g's. These special



et

(6.2) 0 = det(Ap | AW

values of ¢ must correspond to the stationary points of v. T¢ find

out what they are, we write 2 = ( 3 ) and

O >

Ap + (AT (%) =0

or

(Ap A 'AZ)(3) =0,

TO) —d

Here

and it has the effect of removing the last column of AN']A*. The
resulting homogeneous equation above obviously has a nontrivial solu-

tion so the matrix is singular. Therefore

)

is the equation to be solved to find the ¢'s corresponding to interest-
ing stationary points of wv.

To see what kind of equation it is, consider the case m = 2:

R e le  exw Tpve
AW A* = e e
e*DW ‘e e*DW 'D*e
SU
p(zc) e e

0 = det l 1 ] - %o]p(c)-oop'(c) ,

p'(z) e*DW ‘e

which we may write

80
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E n-j)| 2)n-
(6.3) LA B
| piz "oy, 2,n-j
§ =z
d W.
=17

This equation is evidently not that of an analytic function. We shall
return to it later. Supposing for now that we have found an acceptable

solution ¢ for the equation above; we can then evaluate £ from

A arzg = -Ap

in any of a variety of ways; the obvious way is to solve
(Z*AW" A*Z)E = -2+Fp .

This equation is the same as

A

A VR*L = -Ap

where A is one dimension smaller than A, i.e., A= ( A ].

exp™!
Then q = W 'A*L and finally
lat,, = (BATRE) /2« ((Roye () Vi) 112

For the case m = 2 that we considered previously,

Ku"ﬁ* =05
i ® 'p(C)/oo ’
(6.4) q= (-p(c)/oo)u']e ,

and 1ol |D(C)|/J56 .
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7. Computational Det.ils: The Equation tc Solve for the

Nearest m-tuple Zero

As we have seen, in crder to find the nearest polynomial with a

double zero, we must solve the equation

hiz) = o]p(T)-oorp'(T) =
where
(n- k

1 wJ

2,n-
oy lT I 3

1
"W~

J
We will see that there are various ways of solving this equation for

its zeros ¢ when t and p are real, but for the more general com-

plex case there do not see to be many methods that work. We will

usually solve this equalion by means of Newton's method applied to two

real equations in two real unknowns, In this section we will provide

the expressions necessary for Newton's method in the case of an m-tuple
zero.

The equation we have to solve is in this form:

0 = det(Rp | AW 'A%2)

or, written out,

p(2) ewle oo e (DM Y)ee
p' (%) )
0= . . )
p(m-])(c) e*Dm']H']e . e*Dp']H'1(D '2)*e
ol tae o il (n-k)! . (n-k)! -kq - %44
Now eDN(u)e-‘c—r(?")—{k]wk(nk.,)l(nkj)n] | ]:;—_(_;T):

By multiplying rows and columns by powers of { and z* we can
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rewrite the determinant without changing its valye as
p(z)

%0 ° 9,p-2
zp'(g)

(o}
]0 2(z) .

m-1_[m-1] L
SRR g n-1,m-2

In this form it is obvious that the expansion in terms of minors from
the first column will yield

F&) = 8gple) - 81 (ep* (@) # oo ()™ Ty (T[0T

p(z)
-1 '
(AO -A] R (_])m Am-l) CD:(C)

™1™

z yhy

Thus f may be expressed as a scalar product of (1) a vector uy of

analytic functions of ¢ and (2) a vector v of functions depending

only on T and hence only on lczl. In fact the Aj

are real
analytic functions of the real variable | 2l.

4

The two real equations which we shall solve by Newton's method are
Re f=0 and Imf = 0, that is,

(7.1) v*Reu =0 ,
7.1
v¥Imu =0 ,
Now
2

dRef _ AV \» dReu = (yt\* 3 i

aReC‘(aRe;) REU+V*(3ReC) (V) Ja',ﬁie_é‘lRQU"'V*Reu
(7.2a) =

2RezRe ((v')*y) + Re(v*y') .
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Similarly
oRef | ' '
S Trg 21Imz Re((v')*u) - Im(v*u') ,
oImf _

(7.2b) SRe L - 2Rez Im((v')*u) + Im(v*u') ,
olImf

s Imz 2Imz Im((v')*u) + Re(v*u') ,

—

In general v* is a vector whose components are functions of the o..

which can in turn be written as functions of the Oy defined earlier.

AU
Then °k = -_?_°k+1'

For thLCclse m=2 we have v* = (0,-0,) and u = [ p(z) ]
170 zo'(z))°

Then

(v')u = I—‘I—gozp(c) - 0,20 (2))
4
and veu' = {o,p'(z) - og(zp*(2)-p"(2))}

are the quantities required in the expressions for the partial deriva-
tives. Those partial derivatives enable us to compute the Jacobian

matrix required for Newton's method in two dimensions.

The case for m =3 is more complicated. In accordance with the

previous formulation,

%0 °n

. ] ] 2
8y = 0y(03-0,) - (05-0)0, = 0y03-05 ,

%0 %21
8y = 0p04 = 0n0, = 0,0 +o2
1 03 002 172 T1°
2
Az = 0002 - 01 .

For simplicity we will make a slight change:

84
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QO O -
— o O

) ) p(z)
= (0]03 = 02"(0003'0102)’0002'0]) CP' (C)

R cp'(c)+c2p"(c)
vdy .

With v* and u thus redefined,

v')* = _1._ - . - 2 - 1 A A A
(7.4)
p(z)
u' = | zp'(z) ;
2 m Wamt 3
g p" +3zp"+p

It may be observed that expressions like 0103-02 involving subtrac-
tion of positive quantities will result in cancellation. Therefore we

will rewrite those expressions. Let a typical term be

A = caob-OCCd )
Then

1@ b
i = (e A
-3)€, 2,n- k)9, 2.n-k
. (E‘Lwiu |”)(zﬂ‘w—k’—|c "k
n n o .
= _I I ;L;}'CZI"'J|c2I"'k{(n-j)°(n-k)b-(n-j)c(n-k)d} ‘
J= 8

This double sum has an entry for each position in an n by n square

array, except for the diagonal entries which vanish. Therefore, we

may add the i,j and j,i terms together and count only the terms
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with k > j:
-1 . n
2 2 2,n-j- 1,,2,n-k
I I T L S I S T L O I
3=1% k=3+1 "k
= (ned)2 -k + (n-3)P(n-K) - (n-3)%(n-K)9 - (n-3)3(n-k)C .
If we consider A to be a function of a real variable |c2| then we
may define A' as BAZ . Then
Yl
n-1 . n
N -j- 1,.2,n- .
A=) w1—|c2|" ey e K(n-3#n-k){-}] .
j=17j k=j+1 "k

The expression {<} in the equations above has the following values:

for 30. (n-J')(n-k)(k-J')2 :
for 31’ (n-k+n-j)(k-j)2 ’

A 2
for By, (k-3)

We may use these expressions for 8 and A' to compute ¥ and
Vv'. Using the expressions for u (7.3) and u' (7.4) we may solve
the equations for the nearest polynomial with a triple zero (7.1). The

partial derivatives (7.2) areused by Newton's method.
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8. The Second Derivative of lgl

We have just seen which equation must be solved to find the sta-
tionary points of llqll. Some of these points are local minima; others
are maxima or saddle points. To investigate the nature of the sta-
tionary points we now develop expressions for directional second
derivatives of Hqﬂi.

Suppose that z = ;0-+9& for 6 real., Let the function to be

minimized be v = g*Wq. As we have seen,

d 9 . .
¢ % = v = 2Re (g*Wq) = 2Re (2*AQ) .
But the constraint Ap+Aq = O implies Aq = -(ADp+ADq)z so
vz -2Re(2*(ﬂﬁp-+ADq)&)- Therefore
; coeq . * :... . . L)
i ¥ = -2Re {2*(ADp + ADq)Z + 2™ (ADp + ADQ) + 2*ADqz}
0 Differentiating Wq = A* we find
¢
| NG = A%Q + A%D = DFA%RI* 4 A%}
‘ Differentiating (AN']A*)Q = -Ap reveals that
F ) A ave + AW TAve + AW 1AL = -fp
' or
ADW™ 'A% 2% + AW D% A% + AW TA%D = -Abipt
S
t SO
i . =18 2 e S -] .
) g = - (AW A*)  {ADpg + ADW "A*Rr + AW 'D*A*gr*)
? and
i a q = W ID*A* % + W™ axp
L Then
| * . o) -
| ¢ V= Re(oz”) +ulg|”
¥

R s
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where
= ag*wDw  ax(aw- Y ax) - (3D *(KD° 20
¢ = 4q*WDW "A*(AW 'A*)” '(ADp +ADq) - 22*(AD“p +ADq) ,
0 = -2q*WDW™ 'D*Wq + 2(ABp + ADg)* (AW~ TA*) "V (ABp + ADq)
+ 2qWDW A (A TA%) T Tovug
Thus
. . [u+tRe¢ -Imo Re ¢
(8.1) V= (Rez Imz) o |0
-Im¢ ¢-Red Im ¢

The eigenvalues of the matrix are vzt |¢|. If ¢ > |¢| then v
is concave upward at 7. If |¢] < -y then v s concave downward.
Other possibilities correspond to more complicated geometries. For
instance if ¢ > [¢] at a stationary point, the point may be a minimum
or & saddle point, depending on the third derivative,

To compute the components comprising V note that

R ) n+l-1 (n-k)!wk+] Nok-i+]
(AW D*NQ)i - kZ] (n’k)(n-k-iﬂ)!wquﬂC
and 2
-] n'] 2 (w.+ ) ?
q*WOW™ 'D*Wq = J (n-j)¢ —L——|q...]|% .
5 I

Special Cases for V

There are two cases in which the previous expression for U may
be simplified. The simplifications will become evident after we prove

the

1 1 1 1

Lemma. Q*WDW D*Wq = q*WDW A*(AW A*)-]AH- D*Wq 1if and only if
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Proof. (1) 1f m=n then A

s square and invertible so
1

(M7 a%) 1 o ey Tan

(2) 1f Rm-i = 0 then A*y = pxpxg has a unique solution
R A N N (A v-D*A%e )4~ (e prgag)
= 0.

That means that the linear least Squares problem

W 2y = 1 2papy W1/ 2peyq

has a solution y for which the residual

x(u) must vanish; Otherwise
vV would be a better solution.

In fact, since the rows of A are

linearly independent, y = vy, But there is another expression for y:

u e (Aw‘]A*)"Aw‘]o*Wq .

Then y(u) = 0 implies the desired result,

(3) Assume the hypothesis and that m < n;

that Rm-l = 0.

our goal is to siow
If we write B = w!/2s

then the hypothesis ig

(8.2) z*ADN“/Z(1-88*)w°]/20*A*z =0 .

The theory of the pseudo-inverse implies that 1. pgg*

Therefore

is positive semi-
definite for any B,

1-88 )W 1/ 2prpny < g

R 3

and D*A*2 = A*v for y = Bfw']/zD*A*R. Since m < n

AD are linearly independent so the equation g*Ap = y#p
solution v,

the rows of

b e

has a unique
By considering components we find that v

0° 0 and
therefore that Rk =

Vk+]’ k = 0,1,...,m-2,

and finally that
el & 0, as claimed.

£ @ E=Ds

e o i W RPN NGENRTS
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The next simplification lemma is an easy consequence of the

foregoing.
Lemma. If m=n or lm-] = 0, then
0 = Re(9£2) +y]t|2
with 6 = 20%(KB%p + ADZq)
l .
: v = 2(ADp + ADq)* (AW 'A*) T (Bp + ADq) .

Proof. The assertion about y is a direct corollary of the
previous lemma. To prove the assertion about ¢ requires showing that
r ! 2% (RD%p + ADZq) = q*WDW™ 'A% (AW~ Ta%) " (ABp + ADq).

(1} If m=n then we must show that

| S

2;_2(p+q)(“)(f;) = 2+ADA”! (ABp + ADg)

:1
“ or 0
- -1 _ 3
‘ P‘cm-z b RI*ADA y 'Y y " 6
; 1
. §
| But A']y = x where x represents (1-;)"']/(n»1)!. Then
0
1 .
ADx = | O so L*ADx = 2¥ , as we wished to show.
n! s
] 0

(2) 1If By = 0 we must show that

; wr(ora) ™ (2) = qo A (a0 Ty (pr) ()
§ or 2;_2 = y*y for the u* of the previous lemma, The right hand
é side further reduces to um_1 = in.p s we sought to prove.
d
¢
b ®
.

il e S W B



R T PR

—

S

-——

b
- -

> P

o e, W LIRS RAWGLORNT

91

9. The Last Lagrange Multiplier is Zero at a Minimum

In a previous section we saw that there are two kinds of stationary
points for the norm of the distance to the nearest polynomial with an

m-tuple zero. Our object is to prove what we asserted then:

Proposition. Let ¢ represent a stationary point for lgll that
is locally minimal with respect to complex perturbations. Then the

last Lagrange multiplier lm_] = 0.

Proof. We know that all stationary points for {ql have either
g =0 or (p+q)(m)(C) = 0. Therefore we must show that if
(P+Q)(m)(C) =0 and Hql is locally minimal then & . =0. To do
this we will examine the expression for the second derivative obtained
in the previous sections.

The hypothesis, that ADp+ADq = 0, implies that

¢ = - 22;_](p+q)(m+1)(c)

and

1

v = - 2g*WD W - W AR (AW T AY) T aw Y orug

A minimum requires that ¢ > |¢| or
* -1 *f = * -1 -1 * (mﬂ)
- qYWDW{W - A*(AW™'A*)TTAYMTD*Ha > |2 ]| (p*a) (=)ire

The quantity in {+} on the left is 1-B8% where 8 = w1/2%,
1 -BB+ is positive semidefinite for any B, so the left hand side
must be < 0. Since the right hand side is > 0, both sides are exactly

0, so

1

D*Wg = q*WDW A= (AW 'A*) AW D*wg

Q*WDW™~
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and

Z$-1(p+q)(mﬂ)(c) =0,

The first 1emma of the last section tells us consequently that

either Qm-] = 0, as claimed, or m=n. But if m=n, then

()™ (z) = nt £ 0,

contrary to the hypothesis that ﬂﬁp-+ADq = 0. This concludes the

proof as originally worked out by W. Kahan [19].

Thus to find the nearest polynomial with a double zero it is only

necessary to solve the simpler equations resulting from the assumption

that the last Lagrange multiplier vanishes. In the case of a real poly-

nomial, of course, it may happen that the nearest polynomial with a
double zero is a complex polynomial with a complex double zero.

The situation is much more complicated if given a real polynomial,

we see the nearest real polynomial with a double zero. Then three

possibilities may arise: the nearest such polynomial may have a real

double zero, a real triple zero, or a conjuoate pair of complex double

zeros. The last case is treated in the next chapter. That the second

case may arise is illustrated by the following.

Example. Consider the real cubic polynomial whose roots are 1.0

and .224+ .1747. Let the weights in the usual norm be 1, 1000, and

10000. Then the nearest real polynomial with a double zero is the

same as the nearest real polynomial with a triple zero, which is at

r = .4235... . The second Lagrange multiplier does not vanish ot

this .
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This example does not . invalidate the proposition proved earlier
in this section. If complex perturbations are allowed, then when
double zeros are sought, & = .4235 1is a saddle point rather than a
minimum. The nearest polynomials with double zeros turn out to have
r = .4245% ,0993i, and this ¢ may be found by allowing the second
Lagrange multiplier te vanish.

The example above was found by accident while searching for some-
thing else; see Chapter VI. As a practical matter it seems likely that
such examples are quite rare, especially when normal weights are used.
In all the other examples we have encountered, it was sufficient to find
all the closest polynomials with double zeros and the closest with a

complex conjugate pair of double zeros.
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10. Another Kind of Second Derivative

in tie previous sections we have discussed a directional second
derivative for v = g*Wg which we compute by expressing v as a func-

tion of 7, the m-tuple zero. Another approach, which we could use

numericaliy as a qualitative check on the previous method, is to compute

a constrained Hessian matrix of partial second derivatives.

In the

next two sections we will define this idea and explain how such a
. matrix may be computed. Then the character of a stationary point may

3 be construed from the signs of the eigenvalues of the constrained

Hessian,

\ Let f(x) = x*Hx be a scalar function of the vector x, Then

how does f vary when x 1is constrained to the nullspace of a given

linear operator L*? L* ismby nwith m<n.

-

We could choose a transformation P into a subspace of dimension

T

M., - R

n-m so that the space P*x satisfies the constraint. Then P*HP

would be the constrained Hessian and its signature would determine the

'; nature of the stationary point.

& As far as computational details go, we could let P be composed
of columns from the QR factorization of L; see Figure III.1. P of
course is not unique. We require L to be of full rank m; that is,

3 none of the constraints are redundant. Then R is invertible and

, L*x = R*Q*x = R*H*x, so L*x=0 « H*x=0. Thus the columns of P

span the space of x satisfying the constraint.

R VI

The QR factorization «f a real rectangular matrix may be computed

T

/ . IR WL

using the algorithm decompose in the Wilkinson-Reinsch compendium [35,

pp. 113-114]. Q will be computed as a product of m orthogonal

reflector matrices (I - Buu*).

As each is computed, the correspor.ding

e 1

I . W .
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e = s an A av cnee v o

Figure II1.1. The QR factorization of L.
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similarity may be performed stepwise on H. If a represents a column

of H and b* 3 row, then

(I -Buu*)a
b*(I - Buu*)

a-B(u*a)u ,

b* - 8{b*u)u* ,

R

MR .ol

-_e e

e

= Ny W RIS A P e o
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11. Computational Details: A Constrained Hessian faor v

We may apply the technique of the previous section to compute a
Hessian matrix for v = q*Wg subject to the constraint ip-qu =0,

The constrained function to be minimized may be written
T = q*Wq - 2*(Ap + Aq)

with the Lagrange multipliers &* treated ac independent of the varia-
bles q and r. Unfortunately the complex variables q appear in the
equation non-analytically while the complex variable £z appears
analytically in A and A. Therefore we will divide q, &*, and ¢

into real and imaginary parts to have two sets of constraints:

Re(Ap + Aq)

"
o

and Im(ﬁp* \q)

1]
o

Writing out the resulting expression for T in scalar form,
L 2 g, . e (k)
T= Jwi(Req) +(Imq,)Y+ ] Re{xk(p+q) (z)}
j=1 s g k=0

where Ak =P iuk. Then

ﬁJTj = 2;Req; + Elke(xk(n.j,k)c"'j'k) .
5_553; = ijl“‘qj = :g;Im(kk(n.j.k)c"'j'k) :
ThRet " E:)“efww)““”(c)) :
a?;; ® - mg;Im(-‘k(wq){‘“”(c)) .
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where (n,j,k)

[

(n-3)!/(n-j-k)!. The second derivatives are

521 .2 e 22 ,
(aRqu-)2 J (almqj)z
2 2
2°T (k+2) 3T
~——— = ] Re(> {p+q) (2) = - ———r |
(aRe—c—),Z ! k (aImg)
2

sRecrnT = - 1 In0y (pra) (M (g))

2 2 2
2T ] 3°r (143) = 3%r L an
= = i) = (itj) =0,
oRequImqj aReqiaRqu aImquImqj
2 2 2
3T - : n-j-k-1, _ 3T
aRqu. dRer Z(n,3,k+1)Re(>‘kc )= - aIqu. oImeg °
2 X 2
3°r ) . n-j-k-1y _ 3r
TReq; 3Tz - - LIndk ) Im(, 7 3Tna, aRet -

Hith these expressions for partial second derivatives we may con-

struct the Hessian matrix H of the previous section. Then the tecond

order change in T, for a small change

[ Re &q
Im &q
Re ¢
Im ¢

8x =

will be &x Héx.

The corstraints on &x should appear in the matriyx L. Those

constraints may be found by differentiating Re(ﬁp-+Aq) and

Im(Ap + AqQ). Then
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§_B€gAE+A9? - Re(Au.) = 3 Im(Ag+Ag) ,
aReqi J aImqj

3 Im(AB+A9) - Im(AU.) = 3 Re(AE+Ag) ,
aRqu. J almqj

where uj is the j'th column of the identity matrix. Also

3 Re(Ap+Aq) _

3= y . 8 Im(Ap+Aq)
S Re T Re(ADp + ADq) ST ,

3 Im(Ap+Aq) _ . (3= _ _ 3 Re(Ap+A
SReg - In(Rop+ avg) - - EEEppAa)

Then the matrix L will be 2n+2 by 2m and the matrix H will be
2n+2 by 2n+2.

It was necessary to resort to real arithmetic to deal with the

non-analytic nature of the function T. If, however, we happen to be

interested only in real changes in real q and ¢z, then the dimen-

sions corresponding to imaginary parts may be omitted, with considerable

saving in computational effort to determine the signature of the con-

strained H.

R o T Ky
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CHAPTER IV
FINDING THE NEAREST REAL POLYNOMIAL
WITH A COMPLEX CONJUGATE PAIR OF m-TUPLE ZEROS

1z Introduction

If we attempt to find the nearest polynomial with an m-tuple zero

using the methods of the previous chapter, we sometimes find that one

of the stationary points of lgl corresponds to a complex m-tuple

zero z, even if the starting polynomial p 1is real. Then gq turns

out to be complex. It might be more reasonable to restrict q to be

real if p 1is real. Then we would find that the nearest real pcly-
nomial might have a real m-tuple zero, a real m+l-tuple zero, or a

conjugate pair of complex m-tuple zeros.

In the present chapter we will develop the equations to be solved

to find the nearest polynomial with a complex conjugate pair of m-tuple

zeros. In that cevelopment we will take care to divide symbolically

by Imcz to eliminate real solutions r that we usually do nct want.

Then we will develop an expression for the second derivative and show

that we may assume that the last Lagrange multiplier vanishes, just as

in the previous chapter.

100
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2. The Nearest Polynomial with a Complex Conjugate Pair

of m-tuple Zeros

Our goal is to minimize v = q*Wq subject to ﬂp-+Aq =0 and

5p-+§q = 0. We assume that the polynomial p is real, but the m-tuple

zeros ¢ and ¢ are complex with Im #0. At first we will not

T require q or W to be real.

i{ The second constraint may be written Ap+Aq = 0 and the con-
’; straints together imply A Im(g) = 0, since p 1is real,

Ei As in the previous chapter let ¢ vary in a specified direction
:? Z S0 [ = c0-+6i, 6 real, and thus the directional derivative %%

“7 is 7. Then v = 2 Re(q*Wq).

The result of differentiating the constraints is

O

B

(ADp +ADg)Z + Aq = 0

R PR -

"
QO

E 0 (RDp + ADQ)E + AQ

-~

Thus if the vector of infinitesimal changes is

—
3
g yNe e ODe

then its constraint is Cx = 0, where

R

% Re A -Im A Re(ADp+*ADq)  -Im(ADp+ADq)
c-|IMA  ReA 1m(§§ p+ADq)  Re(ADp+ADq)

ReA ImA Re(ADp+ADq)  -Im(ADp+ADQ)

ImA -Re A Im{ADp+ADG)  Re(ADp+ADQ)

Ay W AL NN R s N

L e, SEEN: - VENC SrlRulE]
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Then at a point where v is stationary with respect to changes in

q and ¢ satisfying the constraint, Cx = 0 implies y*x = 0 where
y* = ( Re(gq*W) -Im(q*W) 0 0) .

The notation x, y, and C has been chosen to conform to that of the

Lagrange multiplier thecrem of Appendix 6, That theorem states that

for a vector of Lagrange multipliers (r* s* u* v*) of length 4m.

Therefore the components of y* are

(2.1 Re(q*W)

(r+u)*Re A + (s+v)*Im A ,

(2.2) -Im(q*W)

(s-v)*Re A + (u-r)*ImA ,

o
n

* *
r Rea] +s Ima] + u*Rea2 + v*Ima2 5

o
"

- p* R
r Ima] + s*Rea] u Ima2 + v*Rea2 3

where a, = ADp + ADg and a, = ADp + ADQ.

Recall the formula q*W = 2*A from the previous chapter. The

analogous formula now is

(2.4) qQ*W = Q?ReA + 2§ImA :
where
a; = (r+u)* + i(s-v)* ,

(1]

5 = (s+v)* + i(u-r)* .
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Then substituting into the constraints yields

Bp + AW (Re )Ty + AT (In A)Te, = 0,
(2.5)
o + AW (Re A)'g, + AN (Im A)'a, = O .
Ei This amounts vo «m real equations in 4m+2 real unknowns, counting

Rez and Im . As in the previous chapter, there must be a way of

TV S y
L o WA el AP

using (2.3) to eliminate some of the unknowns in (2.4).
Instead of pursuing ti:is mcst general case, let us digress briefly
to see what simplifyina assumptions might be helpful,

Recall that for a Hermitian W,

q*We = (Re q)(Re W)(Re q) + (Im q)T(Re W)(Im q)
- 2(Re q)"(Im W) (Im q) .

S SN

L. AR . ok

If q 1is r=al, then q*Wq is independent of Im W so W might as

well be taken to be real. From (2.2) and A(Im q) = 0, moreover, we

-,

deduce that

; - Im(q*W)(Imq) = O

(Im 0)7(Re W)(Im q) - (Re q)" (Im W)(Im q) .

ER LTS

Consequently if W is real, then Imq = 0.
Therefore the simplifying assumption we will make is that W and

q are real. Of course, real solutions q are the ones most likely to

be of interest when p is real.

-

gy W LI CMINUENTRT e I A
o

Returning to (2.2), with these assumptions we find

(s-v)*Re A + (u-r)*Im A

[ - ]*
B
u-r

L :
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where
Re A
B = c
ImA
We shall see in a subsequent section that the rows of B are linearly

independent. Therefore s =v and u=r, and (2.3) becomes
(2.6) 2*(ADp +ADq) = O

for &* = 2(r*-is*). (2.4) becomes

(2.7) qQ*W = Re(2*A) .

(2.6) and (2.7) are the equations for stationarity of real q and

complex ¢ with respect to complex variations in q and z. (2.5)

becomes

1

(2.8) Rp + AW 'Re(A*2) = 0 ,

which is only 2m real equations in 2m+2 real unknowns,
As in Chapter 111 we might hope to apply (2.6), which implies
that either the last Lagrange multiplier vanishes or else the multi-
plicity of ¢ 1is m+1. In a subsequent section we shall see that we
may reduce the dimension of (2.8) by one because the last Lagrange
multiplier always vanishes at stationary poirits which are local minima.
Consequently we may assume the last Lagrange multiplier vanishes
when solving (2.8), so the problem becomes one of solving 2m real
equations in 2m real unknowns. The equations are linear in the 2m-2
remaining Lagrange multipliers and very non-linear in Re 7 and Im z.

So as before we should eliminate the linear variables algebraically

and solve for ¢ numeririlly. If ¢ were held fixed temporarily and
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symbolic Gaussian elimination were attempted on the remaining system
of 2m Tlinear equations in 2m-2 unknowns, one would obtain two
expressions involving Re £ and Im f which would be required to
vanish. These last two expressions would be set to zero and solved
numerically for Re £ and Im Z.

We will leave the discussion of arbitrary m now and concentrate
on the most interesting case, when m = 2, In this case (2.8)

becomes much simpler. Then

and

SO

[ (Re e*)w'](Re e) -(Re e*)w'](Im e) )[ Re A [ Re p(g) )
(Ime*)W (Ree) -(Ime*)W (Ime) | Im2 ] | Imp(e) J ’

b otk

(Re e*D)w'1(Re e) -(Re e*D)w'](Im e) |[ReAr) [ Rep'(z)
(Im e*D)N'1(Re e) -(Im e*D)w'1(Im e) Jimx ) | Imp'(z) } .

Written out in detail for the usual W:

'} ( T(Re ;"’5)2/wj T(Re c"'j)(1n1c"'j»wj]( Re A I Re p(z) ]
? | 1(Re Cn-j)(lm Cn.j)/wj 7(Im Cn-j)zle Im ) [ Im p(g) j’
[ 1(n-3)(Re c"'j)zle 1(n-j)(Re ™) (1 c"'j)/wi l[ Re X
[ In-3)(Re ") (am ") pwy Tre ) (1m <"9) 2, Im 2 |

Re zp'(z) ]

{ Imzp' ()
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Write these last equations as

for matrices A A], and vectors A, x and x

0° 0 1 We could solve

the equation

= - =1 -1 -
F(g) = A0 xo-A] X; =0,

or

(2.9) (o) = Boafx, - ﬁOATx] s

where # denotes the adjoint and ﬁi denotes the determinant det(Ai);

e.g.

)~Tat

-1
Ay = (D ar

0

In the equation F(z) = 0, we have avoided explicit inverses at

the cost of introducing extraneous solutions, by multiplying F by

DOD] The equation F( ) =0 may be solved trivially by any real g,

since then the 0 vanish. Since only the complex solutions matter,

the real solutions will Just be a nuisance that will distract numerical

procedures. Therefore we will discuss divided differences in the next

sedtion to see whether we can avoiu the numerical difficulties,
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3. Divided Differences for the Equations

for a Complex Conjugate Double Zero

The equation of the previous section

has every real ¢ among its solutions. The reason for this state of

affairs is that ?, the equation we really wished to solve, was multi-

plied by DOD1' Now

50 = {J(Re c"’j)z/wj}{Z(Im ;"'j)z/wj}
- {I(Re ¢™J)(1m ;"‘j)/wj}2 .

But Img¢ divides Im ck for any &k > 0, as may be simply verified

by induction. Therefore we could write

By = (Im 2)%[(](Re a2 - ire ")a, )

where the standard divided difference symbol 4 means

= Im ck

Ak Tme = @ polynomial in Im ¢ and Re ¢

We could similarly facter out (Im ;)2 from ﬁ]. It turns out, more-

over, that for real polynomials P, Imz divides Im(p(z)) and

Im(zp'(z)). We may dencte these divided differences by Ap and &

; gp'”
Then ono is

(Im )2 o I
0 Im 7

In all, then, (Im §)4

An_j)z/wj -Z(Ln_j Re Cn-j)/wj } ( Re p(z) ]

i
l -Ila Rec"’j)/w3 L(Re c"’j)z/wj Jt L, J

divides the upper element of the vector 5

and (Im ;)3 divides the lower element.

$
1*0%0

Have we found al] possible

107
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Im ¢ factors? If we have, the equation will no longer be solved by

every real .

To answer the question, let ¢ approach a real value, Then as
Imzg ~» 0,
k-1 d

d oo R =
mk—>a—c—(c)-kc : Ap agp(c)-p(c),

by é%(cp'(c)) = gp"(z) +p'(g) .

Then when we substitute this information in the equation

F, () (mm 2)* 0 -1,
(3.1) Flz) = 3| Flz),
Folz) 0 (Im )

we find that, for instance,

C4F](C)

3 ™ (09937920PLE) - (0g3-0135)tp" (€) + (ogoy-o}) (cp" (£)40 (2))

The right hand side is just the equation (I111.7.1) to be solved to
find the nearest polynomial with a real triple zero =.

Naively we might expect that the limiting case of equaticn (3.1),
an equation for two complex conjugate double zeros, would look like
the equation for one real quadruple zero, rather than a triple zero.
That such is not the case shows how unreliable intuition can be when

applied to these problems!

We may safely conclude, however, that all factors of Im ¢ have
been removed from (3.1). Ideally, the equation for a real triple zero
should also be removed by algebraic means. That removal is such a

formidable prospect that it seems more attractive just to numerically
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prevent convergence to those real ¢'s. Therefore we will solve

F(z) = 0 with F defined as in (3.1), with the Im ¢ factors removed
symbolically but with convergence to the real triple zeros prevented
numerically. The reader interested in the details of computing F

may find them in the next few sections.

In the previous chapter we saw that the nearest real polynomial
with a triple zero may sometimes also be the nearest real polynomial
with a double zero. By numerically deflating the solutions for triple
zeros we might be missing some interesting information, but experience
has shown that, if the solutions for doutle zeros are unsatisfactory,
then the triple zeros are much more efficiently found by solving the
equations for triple zeros rather than allowing the solutions of the

equations for complex conjugate pairs to coalesce.
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4. Computational Details: The Equations to Sojve

for a Complex Conjugate Pair of Double Zeros

We aim to find zeros of the function

¢ F(2) 3 (In 2)° 170%0 =~ Johy%) -

Therefore define

and

D = DRe &" )2/, 142w - (J(ke £™9), RL

and D1 is the same, except (n-j)/w. replaces l/wj. The formula

may be rewritten

n-1 n
] 1 n-k 2
(4.1) = I T
0 VY5 k=541 Y k-J
The formulas for the derivatives are
aD n-2 n-1
(3.28) 532 = 2J¢)? TN T L I Recay i+ 1c/2T )
Jj=1 J k=j+1 Y
n-1
+§2_ I W]—"n- “:— ’
n j=1 %5 eI




m
3D 2 n-1
2 1 4 n-k-1
(4.2b) = 2|zl — — b, 17| (2(n-k)Imz &, _ z
2 Img : v k=§+1wk k=3 *| l
n-1
¥ éL ) £— A‘n-j":-;j
n =173
In the notati-n of Appendix 4
s an, o ab,
k - 3Reg’ k - 3Img

Now

- 2 . n-j
(14, j/w;)Re P (I(Re ©" ")a, s/Wih,

to
and
., QAZ Jw.)Re p' + (Re p)](24 A )/
aRer n-3' 3 P K n-jtn-3'"5
n-j 9
- (T(Re 285 5Re &)
) ( n-j,r _ s . n-j-1 .
Ap{.Re i M +(n-3)b,_;Ret Mws s
(4.3)
¢ ! ato 2 ' m
=ThE ./w.)Im p' + (Re p)E(ZAn_jAn_j)/wj
- (T(Re 5" )A,_ J)(a Imc Ap)
i -4 }:(Re 3 n-j =\~ e, _ n'3'1)/wj :
F: Likewise
b 3
3
i t, - (E(n-j)A j/w;)Re tp' - (L(n-3)Re T J/wJ)ACp ,
at, 2
3 s TN (E(n-J)An_j/wj)Re(cp"*rp )
(4 4) ] P( ard - J 8
i + Re(gp )L " J)(ZAn -j¥n- J)/W (2(n'J)Re g ‘;n_j)(m:pn)
| ) ~nai). o N-3 3 n-j-1
ég bopei(n-d)e s Ap. * (n-3)e, 5 Ret Vs -
+
¢
g
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ot
The expression for TTmz MY be obtained similarly by substi-

tuting (n-j)/wj for 1/wj and Zp' for p in the expression for

o lmz’

Continuing in the same fashion,

.

- n-j n-j,2, .
by = - ([ Rez b_j/%;)Re p + (J(re c"Y) AR

1= - (Dn=g)Re "8 7w )Re tp' + (T(n-3) (e ") 2w )

0 = _ (5 n‘j '
TRe T (JRecz An_J./wJ.)Rep

o
i
]

zp'

- (Re p)J(Re ST (n-j)mn_. Re'cn'J'])/wj

(4.5) o ]
n-j,2 : n-j3 n-j-1
* (I(Re ") /w ) pple + 4, 12(n-j)Re ¢" pe¢ /s

ab0 n-j
STaE - (JRez An_j/wj)lm p

- (Re p)J(Re "IpM - (n-3)a__. Ing"3"Tyy,

n-j J J
. 34 .
n-j,2 p s n-j, n-j-l
+ (J(Re 7Y /wj)almc APZZ(n J)Re "'V Im¢ /Ws

The formulas for the derivatives of b] can be obtained by the usual

substitutions.

The formulas in this section may be used to implement Newton's
method to solve the two real equations F](c) =0 and Fz(c) =0 for
their two real unknowns Re ¢ and Im Z.
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5. The Rows of B are Linearly Independent

Corresponding to the complex operator A of previous chapters,

it was necessary in Section 2 to define the real operator B which

n R2m

maps R to

by

[ Re e* N

= F 2m

Re A Re e*Dm']
Im e*

mn-1

| Im e*D

N

n

Proposition. If Imgz # O then the rows of B are linearly

independent.

Corollary. BW'8' s invertible.

Proof of Proposition. We will show that B has full rank 2m by

exhibiting a set of real vectors {qkr’ 0<k<m-1}, such that

f

\

-
-

(

{qur} = <

X X X O X X »x —
X X OOX X — O
2
-

S

N
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and a set {qkm} such that

0
X
X
X
{qum} = )
X
X
X

In other words ,

) 0, 0 <J<k-1,
q (a) ={
kr 1, =« ,
and
: 0, 0<j<k-1,
qkm(J)(a) N { ; .
T, j=k
)
‘i The existence of 2m  such real qk's is equivalent to the linear inde-
‘ pendence of the rows of B.

-

Clearly, for either set of LhE

9, {1) = (T-a)k(r-&)kS(T)
i

for some real s(t) with s(a) # 0. Obviously qk(j)(a)

=¢ #0.
But what if ¢

=0 for
0<J<k-1. Furthermore 9, M ()

BT PR

If ¢ were real it would
suffice to let s(t) = 1/e.

is complex?

RN

It turns out that s(t)

mined.

=0T+n with real
To see this we must examine qk(k)(
for (r-&)k;

6 and n to be deter-

a). First form an expression

k
(1-a) =(r-a+2iImaﬁ-'z

(§)(r-a)j<zf Ima)k-d

SOV S
Rt DR . Y T TR

<.

o

O, ST R S L oG e N A
TP oA o R
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by the binomial theorem.
Then

k . .
lead Tl = 3 [*hlmead 28 1mand
j=0"

(k) (k+3)!

k+j-r,,. k-j
. s T-0) (27 Ima)
J =nmx%0,r-k) 3 {k+j-r)!

r

0, r<k,
'd—"{(T"U.)k(T'a)k}l ={ k -k

f kK!'(2Ima) i%, r=k.

dt | T=0a

We may now invoke Leibniz' rule,

K .
o*(ps) = § ()0 Ip)0%s)
320
to find
dk K, -k K .k
—_F{(T'a) (1-a)"s(T)} = k!1(2Ima) +i s{a) .
dt =0

(k)

This expression for a a) shows that it is only necessary to choose

an appropriate real s of degree at most 1 to get any desired complex

value of q (k)(a). If w is the desired complex value of s(a) then
k
Re s(a) = Re(6a+n) = 6Rea + n = Re w ;
Ims(a) =8Ima=Imw .

Thus 6 = Imw/Ima, n =Re w -~ 6Rea, sO we can construct s and
therefore each U and e So the rows of B are linearly inde-

pendent as claimed,
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6. The Last Lagrange Multiplier is Zero

Section 2 demonstrates that there are two kinds of stationary

points for v = q*Wq, q real, namely those for which the last

Lagrange multiplier vanishes, and those for which the multiplicity is

greater than anticipated, so that (p+q)(m)(§) = 0.

Proposition. Let ¢z represent a stationary point for (gl that

is locally minimal with respect to complex perturbations of z. Then

the last Lagrange multiplier Rm_] = 0.

Proof. Since v = q*Wq, v = 2Re(q*Wq). But Wq = Re(A*R) for

a complex vector & of Lagrange multipliers. Therefore

v = 2Re (L*AQ) = - Re (2*(ADp + ADq)Z)

| SR

because of the constraint Ap+Ac = 0. Then

AL, o -

(6.1) ¥ = -2 Re {2*(ADp+ADQ)% + c*(AbPp+ADZq)22 + 2*ADGE)

'; Assume now that we are at one of the stationary points with iﬁp-*ADq = 0.
; Our next task is to obtain expressions for é and §. Differentiating
l |
the constraint reveals that
(ADp +ADg)z+AQ =0, so A3=0,
2
: while differentiating the stationarity condition Wq = A*gy yields

WG = Re{A*j + D*A*zé}
SO

:

1
é AG = AW
;

b

$

4

Ve (A% + DA%} = 0 .
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From
'] l—*‘ - N .-] 0
AW " Re (A*L) = - AW Re (D*A*gr) ,
deduce that .
7| Red Mg 4
BW 'B . | = -BRe (W 'D*A*xz) ,
Im 2
where
Re A
B =
Im A

as in previous sections. Since the rows of B are linearly indepen-
dent, B 'l s positive definite and

Re £ N
(6.2) T = - 8WTBT) TR Re (W D*ARY)

Im 2

& = W Re (A%} + D*A*LZ) .
Then
Re(A*L) = - B (BW 'BT) "B Re (W' D*A%2?)

and
(6.3) g = ww-8TBw BT TB)W 0% Re (A*eE) .

Recall that

2 2

G2 o2 Re(ﬂ.*(;\ﬁ p+AD Q)&Z) = ZRG(R,*AD;}&) 0

We may write

1

(6.4) Re(i*ADG?) = Re(e*A)DW (W -8 (B4 '8T) TB)N"10* Re (A*1l) .

T( “1,T,-1

The matrix (W-B (BW B') 'B) is positive semidefinite so both sides

are real and > 0.
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As in the previous chapter we may write

. [Red+(Reb)"M(Reb)  -Imo+ (Imb)TM(Re b)) (Re
V= -2(Re Im ) T T .
-Im¢+ (Imb) M(Reb) -Re¢+ (Imb) M(Imb){{Imz
where
b = D*A*g ,
: M= w200 w2yt 2 T 2y YV 2y Tw1/2
% and ¢ = L*(RD%p + AD%q) .
¢
r_f Then a tedious but straightforward argument paralleling that of
)

Section I111.9 shows that U > 0 for all ¢ implies ¢ = 0.

Alternatively we may recognize that for a suitable Z,

I YA

b = -20]4x(ABPp+AD Q) 22| + Re(2*ADEE))

v VIR 3

At a jocal minimum ¥ > 0 for all z;

recall (6.4) to see that
~~2 2

: 2*(AD“p+AD“q) = 0 and also &*ADQ = 0.
’ Thus by either argument, at a stationary point which is also a
| ! minimum, zm_] =0 or (p+q)(m+])(;) = 0. In the ¥.:5t case we are
i finished. The second case implies that n > 2(m+2),
Furthermore, £*ADQ = 0 and (6.3) tell us that
]
1 Re(2*A)ON" 't - BT (BN 'BT) 1B To% Re (A*2) = 0 .

Since the matrix in brackets is positive semidefinite,

w818 18T 183w To* Re (A*2) = 0
and

Re(2*A)D = 5 B

< oy W W‘Mifs PV R

i'|IIliiﬁiHiilIIllllIllIIllIIlllllllllIIlHllllllIIllllIllIlllIlIlIIlllllllllIllﬂiiIl3i:u-lﬁa;n.aih_u¢52hd§35ﬂ35%‘Egagﬂﬁl
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where

o7 = Re(2*A)oW 18T (8w '8T)~!

o) sT is real.
Qur next goal is to construct a matrix 1ike B, but augmented by
two more rows, from which we can conclude the result, Partition 2&*

and sT as follows:

2* = (L,A)*

s =(pu6s v)T .

A, 4, and 8 are scalars. Then

Re(2*A) = (Re 2)T ReA - (Im 2)' ImA
and
. - 1| Re AD
Re(2*A)D = (Re? ReX =-Img -Im)) .
Im AD

Finally let

{ e*D
A= b
[ ap™!
S0
e*
A=(7%)
and -
A
AD = ( e*dn ) .
Then

may be written
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[ Re e*
Re A
(s ReRT-u', Re A, 0, -Im&—v', -Imn)| "€ e | 0.
Im e*

Im A

Im e*ﬂ“‘

The matrix on the right is just a B matrix, but for m augmented
by 1. Since n > 2(m+2), the augmented matrix has at most n rows
which are linearly independent. Consequently 2 =u-iv, 0= 0,

u=0, and X = 0. But this X 1is just the last Lagrange multiplier

lm-l’ concluding the proof.

We learned in the previous chapter that to find the nearest real
polynomial with a real double zero, it might be necessary to solve
equations for a real double zero and equations for a real triple zero.
But in this chapter we have the more satisfactory result that to find
the nearest real polynomial with a complex conjugate pair of double
zeros, we need solve only one set of equations; it is not necessary to

look for the nearest real polynomial with a complex conjugate pair of

triple zeros.




CHAPTER V
FINDING THE NEAREST POLYNOMIAL WITH MORE THAN ONE MULTIPLE ZERO

1. Introduction

Previous chapters have exhibited the equations to be solved to

find the nearest polynomial with one multiple zero or one pair of com-

plex conjugate multiple zeros. Now we turn to the more general problem

; of finding the nearest polynomial with a specified configuration of

¢ multiple zeros. We shall see that despite some complications the

. theory bears a family resemblance to what has gone before. We shall

\ find that, in the complex case, the equations to be solved for the
muitiple zeros assume forms simpler than what might have been expected,

because certain Lagrange multipliers vanish. However there is some

S R

doubt, in general, as to which of these simpler equations should be

AR, St

solved for the multiple zeros. Fortunately when all the zeros are

doubie the equations to solve are fairly obvious.

o

Unfortunately, just as in the case of the complex conjugate
: multiple zeros, the equations we solve become much more complicated

‘ when divided differences are taken in order to inhibit unwanted coales-
IS

cence of the multiple zeros. These equations are given in full detail

3 for the case of several double zeros, and especially for the case of
E; two double zeros.
1
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2.  The Nearest Polynomial with Several ]l Multiple Zeros

Given a complex polynomial P(T) we seek the nearest polynomial

(p+q) (1) such that P*q has k complex multiple zeros Z;- Each
Z; has a multiplicity m. > 2, and Z My < n. Corresponding to the

operator A of previous chapters we def1

Ai by
*
ei*
ei D
Ai = - mi

e Mi=1
ei D
n

ei* is the evaluation functional for c The m, by n+1 operator A

is defined analogously with e replacing e1

Then the equation

Aip+Aiq= 0

expresses the constraint that p+q has an m-tuple zero c

We also define the operator

which may be seen to be somewhat 1jke the B of the

previous Chapter;
it will be

used for similar purposes.

Drop_osition. If c # '. when

T#J then the rows of S are
Tinearly independent .
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Corollary. SW']S* is invertible.

Proof of Proposition. We will show that S has full rank by

displaying Zmi linearly independent vectors

The qj , are defined by their corresponding polynomials as
(c- )T 1 (reg,) !
q. (1) = (r-z.) 1 (x-r.
JsT J i#3 1

and the conclusion follows immediately.

Our goal is to minimize v = q*Wq subject to iip4-Aiq =0,
1 < i < k. Let the raised dot (*) represent differentiation in a
particular direction of a specific % cj(e) = ;j(O)-+e&j. Then
as usual

.-.d_\l-.- o

V= o 2 Re (q*Wq) .

Differentiate the j'th constraint to find
ADp+A.Dg)z.+A.q =0,
( 0P+ A q)cJ AJq

but differentiate the other k-1 constraints to find

AG=0, ifj,

>aq

because Ai is independent of 7

By eoplying the Lagrange multiplier theorem of Appendix 6 at a

stationary point, discover in the usual way that

(2.1) Q"W = ; Ei'Ai = %5

i
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There are k vectors zi* of Lagrange multipliers and 2* is their

concatenation. Furthermore

ke B
' . (ADp+A, =
(2.2) £J ( JDp AJDq) 0

Thus at a stationary point, for each j, either its last Lagrange
multiplier 1; At vanishes or cj has multiplicity one greater than
expected. In the next section we will see how the techniques of pre-

vious chapters can be applied to show that the minima of v always

* -
have lj’mj'1 = 0.
Now when we substitute in the constraints we find
RpradlsH=0, 1cick,
or
(2.3) SW s = - §p .

Since the rows of S are linearly independent, sw“s* is positive
definite symmetric and therefore invertible. But we may assume that

k elements of & vanish, so we have Zmi linear equations in

(Zmi)- k unknowns. The attempt to solve such a system by Gaussian
elimination yields k expressions which must vanish. The corres-
ponding k non-linear equations in the g, may in principle be solved
for the By In subsequent sections we will display equations for the

case that all m; = 2.
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3. The Last Lagrange Multipliers are Zero

From the previous section we may deduce that
v = 2 Re(q*Wq) = 2 Re(2*Sq) = -2 Re(lg(ﬂj5p+Aqu)ij) .

When v is stationary, then for each j, either its last Lagrange
multiplier vanishes or the multiplicity of Cj is one greater than

expected,

Proposition. Assume i#j = g #cJ. Then at a stationary point

at which v is minimal with respect to complex perturbations in .,
J
the last Lagrange multiplier in 23 vanishes,

Proof. Continue to differentiate the expression for v above:

2 22

. - I~ . -~ ~2 . * ()
= = 2X(A.Dp+A.DQ)z. + 2 ¥(A.Dp+A. -+ 2.A. 3
Y = -2 Re{ J(AJ PHA, q)Z zJ( 5P AJD q)cJ zJAJch}

J

Assume that Kjﬁp-+Aqu = 0 at a stationary point, which simplifies
the expression for U above. Furthermore the assumption means that
Im; < n because k> 2 and allz.'s are distinct.

From (2.1),

1

g = WIS ewlseg

and from the constraint and the assumption,

Sq = 0 .
Therefore
swlsed = - swl§ed
But
§ef = thzi = D*Agajéj .
SO

| A
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rode

Tegr=Ten-1 3
= - S*) "SW 'D*A*g.r.
fsw ) D AJchJ

q = W D*A*L.2. - W lekfew=Tewy=Tey~] z
G = WDrATLT, - W is*(SHT %) Tsy D*ASR,L,
and
*p Ntk -1/2 -1/2 =12 ggr o= 2 o« 2
A.DQr = YA, 3 * * * A%k
25A;0qz zJAJDw {1- (W) (W™ sy Ty 1/¢p Ajzj 1
(1 -MM+) is positive semidefinite for any M so
U= - 2 Re(a} (A% + a 0%0)Eh
- 2(2*a. 00712 - (25 (W 2y Zpupeg g1 (2
J ] JJ ')
b If v is to have a local minimum then % > 0 for any &j’ yet by apt

choice of &j we may arrange for both terms to be real and negative,

so they both must vanish:

e

+1
A§(P+Q)(m3+ )(c-) = 0

{ J
.Q and

(3.1) LA 20 - T sy (0 25yt L g

-

From this point we follow the argument of III.8 to show that AT,

the last element of 2}, vanishes. From (3.1) we find

* -
i szjD v*S

where vy* = ngjDN']/z((N']/ZS*)*)*. Now partition v+ conformally

with S so

V*S = Zv;Ai 2

Introduce an augmented operator

T e W AT NG e
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v

i

m X,
* €t
le)

3 r Im, +1

Then we may rewrite the egquation

*C _0*A. D =
v*S leJD 0
as
* .. oyk gk oyk .. gk =
(3.2) (v.I V2 Vis vk)S 0,
where 33 = (vg 0)-(0 23). Since Zm,i < n, the rows of S are
linearly independent, so the vector in (3.2) vanishes. In particular,

the last element of 03, which is -A}, the last Lagrange multipler,

vanishes as claimed, completing the proof.

As in Chapter III, the present result applies when complex pertur-
bations are considered. In the case of real perturbations of a real

polynomial, the result is known to be false in general for k

1
—
o
3
a

counterexamples could probably be constructed for larger k. It seems
1ikely, however, that in most practical problems satisfactory results

may be obtained by assuming that the last Lagrange multipliers vanish.

i
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4, Equations for k Real Double Zeros

The nearest polynomial with k real double zeros is of interest
in studying polynomials 1ike Wilkinson's (Chapter X). The formulas
we shall derive have not been treated by means of divided differences.

Section 6 contains formulas for the case k = 2 derived with the aid

of divided differences.

The equation we wish to solve is (2.3);

1

T——

SW 'S*} = - 3p .

- SE——
T it ARG o i SN P T M

We know that the last elements vanish for each zi, a subvector of 2.

T T

Therefore we may define the vector A by letting Ai be the first

element of 21. Then

S*% = JAte, = Ja.e, .

:.‘4,‘ LB AT R

Recall that e; is the evaluation functional for Zse

j Having eliminated some of the unknowns we are left with 2k equa-
)
{ . . . .
tions in the 2k variables A]’AZ"“’Ak and BysBoseeeslye Since
3 the equations are linear in the Ai's we can easily eliminate them,
, leaving k non-linear equations in the ¢'s. To do this divide the
; equation (2.3) into two pieces:
g T
» S -
¢ So¥ St = - S0P
L% and
: .
§ (4.1) s]w SEA ® - S]p
where

.- LT SN,

i

L ARG ST e SR S, ]



Lau

. QIS AT iﬂ""v’lw" RS o ".Qﬂ.i: -

R O R A B R i R P M

—~ere .

.

L%

129

To simplify matters later multiply (4.1) by the matrix

= diag(c1,...,ck). Then if we define

s ooy
To = SW 'S »
—
p(z,)
Vo=Sp=| 3
p(z,)
i zyp'(zy)
V1 = ZS1p = ; s
!
p'lz,)

where

1

= 3 1
(To)ij = e;w e; and (T1)

= *N
ij cieti ej 5

then we may eliminate A and try to find zeros of the function

(4.2) Flz) = Ag- Ay = Tolvg =Ty,
where z = (§1""’Ck) and F are k-vectors.

To keep the following computational details simple, we restrict
attention to real %5 We wish to solve (4.2) by Newton's method; to
get the necessary derivatives let (°) represent 3%7 and recall that
Ny = - il for invertible matrices M. Thus

. . 5] -1e =1 e
(4.3) F(z) (T0 )v0 + T0 Vo (T1 )v1 -7 vy

0
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Now
To= S wlex 4 g WS
0 0 0 0 0
0 1
_ -1 -1
= arm eEDw e‘i . + 10 e;w D*ej 0
0
The non-

Zéro entries are contained in the j'th row and the j'th column
respectively. Continuing,

[ 0 J'th entry non-zero
0
g - -1 -1
Tolg = eDH ZAo’iei * g, S D*e,
0
[ o
(4.4) N
[0
0
T.A, = (e*-+g.e*D)w'1 A ce. | + 4 VA w']D*e
1M g a5 1,i%4 1,50 J°
0
\ 0 J

By use of formulas (4.4) in (4.3) we may compute the j'th row of the
Jacobian matrix appropriate for use with Newton's method to find soly-
tions of (4.2).

In terms of our familiar diagonal norms,

n
(Tp)s = AU T

(T1)ij = Z(n-r)(cicg)n-r/wr

130
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(o) = g 585 Ln-rde,e)™ Ty, 445,

17

(Toto)j = 1 o, 583 T (n-r)(eyen)™™

* g, 553 L) (g T

r

(Tyay), = /\1’J-r:1.Z(n~r)2(c1.c}*)"’r']/wP . TG,

(M) = T 4y 523 1 (nr)2(z o)1,

" : "
§ % 2 n-r-]

.: Ay LT. n- gx)n=r

!

fi;

i

A e

e R 5K

. -~

o

-

T g T . A BPPTNETRT . U A i
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5. Deflation for Several Double Zeros

When solving equation (4.2) for polynomials of degrees only
modestly larger than 2k, one often finds that zeros of F are quite

abundant. In order to prevent reconvergence to zeros already found,

3 some sort of deflation is required.
Unless further steps are taken, moreover, convergence will occur

to solutions in which some of the ostensibly distinct Ci have coalesced.

3
q This behavior must also be suppressed; we shall do so numerically.
% A workable approach is to find the zeros of G, rather than F,
é where
fg G(z) = F(z)/A
i AA ; AI]IAic’-c i
. IR e i

iR Ll .

for elements Ci and Cr of z, and

- 4
o<t
>
~N
M
(9 R |
N
Li
N
»
E—— 2
™ N

-

for known zeros zS of F.

o

If we let (') = -9 then
dcj

a

- .

= F/A- (4/0)6G .

fepl]
Ll

We know that

T gty 4 A SIS IIRIT . TN TR i
Y )
pr— |
i
~N
=
pr— |
-
W~
[ )
p— |
~
———
|
[ )
]
Al
—
L
-
-8
(%)
1}
~ny
.
m v
- B
~N L]
(] r—d
~N i []
w ~N
= K N
~N N~
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n-1 n
0 fg=—ly e T LT L ek,
0 l 2 K 1°2

2
|
95" F ke v

k-j

In the last expression, the divided difference A

1 .
= (C]‘Cz)/(C]'Cz)
is a polynomial in c]

and L, for any i > 0. The corresponding

result for 6] is

n-1

- o n -k 2
L -jzl(rl’;)k §+1 Wy Wl sl

To apply

4 & = i - i
SPAGES SURRIE"  PITNE Y IR-Sa- Se - Sl il i =y i S
> .
=

Newton's method the derivatives will pe required;

assume Z,
: and cz are real:
3
-1 g 4,
§ o _ 2" n-j
! = J
‘ -2 n-1 34, .
2" 1 2 2yn-k-1 k-
‘ t el Z 4, :(z7z3) {(n-k)a, .+¢ —==1}
H
' 1)
;f Since &, and Lo are symmetric in (6.1), 0

may be obtained by
3;2

1)
interchanging the roles of ¢y and L, in (6.2). Similarly !

—

may be obtained by Substituting (n-j)/wj for l/wj and (n-k)/wk
¢ for l/wk.
? When finding zeros we will need to compute eo, the first element
§ of the vector T+v » and @
i 00

1’ the first element of the vector T*v

é Then

i a - n-j
’ (6.3) 5 = 8g/(gy-t,) = J-Z1(C2) b n-g/s -

p,n-J
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Now

_ 5 plg) - (e,

A
p,n=y C] = 52

Ap n-j is a polynomial in g, and tos  the details of jtg construc-

tion are given in Appendix 5. Similarly

. 2 enejel
(6.4) 8 = 0)/(¢y-c,) = 515l J.Z](n-a)(cz) bt neju1/%;

where

n‘j n'j '
_ % ) -
p' :n'j - C" - CZ

The derivatives of the §'s will also be needed.

In the real casge they

are
28 24 n- o4
0_ 1 0 n-1-j °%p,n-j
— = . +
R T C2JZ ) 3z, A
% 1 2,0 + Loy T %
3 T wyar, tLt (g 7%,n-3/%5
t, (6'5) aA
. I m _iy,.N=j-1 on-j-1,
3 C] T X(n J)Cz {C 3 ] p' n_j_]}/WJ ’
i 28 . 34
1 _ _sy,N=j-1 s 'yn=j-1
FTou C]CZZ(" J)CZ {(n-j+ )Ap',n-J-] "’CZ“LBCZ—J—}/WJ

We could find zeros of the function

S
F(z) = TO Vo - T] Yq

s o " . A SN TR A T e gl
BN i CRE. e 1o o
"
O»
o ,“
—
O -
<
o
]
|-
—
— -
<
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but for simp]icity we will instead find the Zeros of

Fla) s 001 <z>=ﬁ§‘ v -ﬁg" iy, .
14551 %(2-2,) 1787 000 T TRy
F(z) = 0

is a system of two equations, The first one is

6160‘6061 = 0 .
The second equation may be obtained from (6.6

) by reversing all
0CCurrences of c]

and ;2_

in the expressions for the 8's and §'s
The appropriate derivatives m

3y be computed similarly,
Now that a specific equation, (6.6)

» 1s ready to be solved, methods
for computing the various diy

ided differences that appear in it win
e in Appendix 5.
what happens when & - ;2?

be required; these methods ar

We turn now to the
Question:

The original function (4,2) is undefi

ned when c] =
modi fi ed equation

52. The

$ t .
GlTbVO -GOT]v] 0
turns out to be satisfied wiienever c] = 52.
(6.6), is not so easily satisfied
to its terms as c]

But the divided difference
version,

y let us examine what happens
-+ ¢2'

We discover that

: = 4k ok
lim Ak = az(c ) = kg s

58yt

1im AM = c"p'(c)-kcmp(c) r
NN

o Aot M ek g
S1alpsg P
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Substituting these expressions in (6.6) and simplifying leads even-
tually to the equation to be solved for the nearest triple zero
(I11.7.1). Recall that the case of a complex conjugate pair alsv reduced
to a triple zero when the divided differences became confluent. Just
as in that case, numerical methods will be required to inhibit conver-
gence to the triple zero solutions we wish to avoid.

Both the method of this section and the method for k > 1 double
zercs may be used when two double zeros are required. Both methods
seem to work satisfactorily for polynomials of low degree, but the
general method for k double zeros worked better for Wilkinson's poly-
nomial of degree 20 discussed in Chapter X. The equations described in
this section seem to have a much greater propensity for causing Newton's
method to dawdle aimlessly without converging. It may be that the
divided differences warp the geometry of the function whose zeros are
sought in a way that tends to conceal the zeros. There is some compen-
sation in the fact that those divided differences help prevent coales-

cence of the zeros much more effectively than numerical means alone,




CHAPTER VI
LOCATION THEORY FOR NEAREST POLYNOMIALS WITH A DOUBLE ZERO

IS

L Introduction

In this chapter may be found some clues to the answer to the

question: Given a polynomial p, all of whose zeros are simple, where

should we 1ook to find the nearest polynomial

p+q with a double
E zero r? That ¢ which minimizes Hql globally is one of the solu-
3 tions of the equation
i (1.1) F(z) = 0yp(z) - og5p' (2) = 0 3
;
ZE but there are usually many other solutions, most of which represent
.3 local minima.

Remember that the real non-analytic functions % and o, are

defined as

A bt

n q
2,n-

j=1

- ...

n-1 :
2,n-j
o 12517 Y (n=3)/m;
! j§1 3

.

-

Thus we are considering only the norms derived from diagonal Hermitian

a

i N

quadratic forms. Most of the results to follow, moreover, only apply

to real polynomials p.

The purpose of ati2mpting to develop a theory of location is to

make our numerical solution procedures more efficient. Equation (1.1)

is typically solved by Newton's method from some starting point, An

ideal <tarting point would have the property that Newton's method

would always converge to the global minimum corresponding to the

; . : - T wf._;w_—af#'t'u:‘“ .
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; nearest polynomial with a double zéro. A satisfactory starting point

would always converge to a Tocal minimum that is nearly globally

minimal. The ad hoc starting procedures discussed in Chapter VIIJ

usually seem to be satisfactory but the known theory is insufficient
to account for their sdccess.

The results in the following sections seem far from optimal. One

might hope that a theory could be developed comparable to the elegant

theory of the location of zeros of polynomials discussed by Marden [21]

and Householder [12]. But much of the theory for Polynomials hinges

on the entire analytic nature of pol:i.umnial functions. Certain of the

examples to follow effectively counter some of the conjectures that

“&‘—.«':.::‘-. A MRS e i M - - -

might be made by analogy with the polynomial case,

We can make a few preliminary observations about (1.1). Among

its solutions are the global minimum we seek, numerous other Tocal

minima, a few non-minimal stationary points, and the solution = 0.

ré This solution 7 = 0 is an artifact of the way we wrote the equation.
We could just as wel] divide by ¢ and write
i
: - N 2,n-j-1 \
} (1.2) c*(,I}((n-J)/wj)lc " Yn(2) - oppt(z) = 0 .

Then ¢ =0 is a solution of this equation caly if p'(0) = 0; that

is, only if the next to last coefficient Pn-1 = 0. An examination of

the stationary condition Q*W = L*A  tells ug that Q.1 = 0 while

the constraint Ap+Aq = 0 tells us that Q.

1% “Ph.1- Therefore

¢ =0 is a stationary point for 1q1 if ang only if p 4 = 0.

0 need not represent a minimum.

Even
then ¢ =

RS g S
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Since :he factor ¢ does not seem to contribute any information,

why not leave it out in our subsequent analyses?

We keep it for a
reason wh

ich becomes apparent when we write (1.1)

; oy ()
(1.3) %-%L;;msk(;) .

Now

in yet a third form:

R(z) = (Z(lczl"'J/wJ.)-(n-j))/(Z(lczl"'j/wj))
may be thought of as a weighted average of the quantities

(n-j). 17
we do so then we realize that

0 < R(z) < n-1

for 0<z] <,

Thus (7.3) equates a meromorphic function of the complex variable

¢ to a bounded positive real function of ]

|, which is in fact
analytic when

"egarded as a real function of a real variable.

If the
factor of ¢ were removed from (1.3) it would lose ijts attractive form,
We will exploit that form later.

A typical result in this theory is the following.
Proposition. Let P be real with two real zeros a; and Qs
@) L a,. Then

F(z) = oyp(z) =opep'(z) = 0

has a solution : sych that 9 LC <,

140



AR Ll B Ve n MR MM e o M

i
1
¥
Y,
3
$
g
»
L%

-, .

Proof. If ay and ay have opposite signs or if either is zero,
then 7 = 0 satisfies the assertion. Then without loss of generality

assume that 0 < o < 0y and that (a],az) contains no real zero of

p. Then
Fay)F(a,) = oplayJoglay)ayanp' (e )p(ay)

If that product is zero or negative then a zero of F 1lies in [a1’a2]
by the intermediate value theorem, But if that product is positive

then p'(a])p'(az) > 0. Considering Taylor series, we see that

plas+s) ¢ &p'(ay)
p(az-é) 2 -6p'(a2) R

for small enough & > 0. Thus
pla#8)play=6) & 87" (a))p' (ay) < O

so the p must have another zero in [a1,u2]. contrary to assumption.

The contradiction implies F(a])F(uz) < 0 and concludes the proof.
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2. No Complex Solutions for Certain Real Polynomials

Wilkinson's polynomial of chapter X has the property that all its
zeros are real and have the same sign. When solving (1.1) for

Wilkinson's polynomial we need not search for complex zeros because

of the following.

Proposition. Let p(t) = H(Tm-aj) be a complex polynomial in 1",
J
If all the numbers o5 are either zero or have the same argument ©

then the non-zero solutions ¢ of (1.1) may only have argumerts

(6+km)/m, 0 < k < 2m-1.

Corollary. If a real polynomial p(t) = n(r-aj) has all real

zeros aj all of the same sign, then all its z's are real.

Corollary. If an even real polynomial p(t) = H(Tz-ag) has all

zeros taj real, then all its ¢z's are either real or pure imaginary.

Proof of Proposition. Rewrite (1.1) in the form of (1.3):

zp' (¢)/p(z) = R(|zg]) .

Remember R is a real function of |z] and 0 < R < n-1. Suppose

first the special case that all oy = 0 so p(tr) =1". Then (.00

reduces to n = R(z), so the only solution of (1.1) is the universal

solution 7 = 0.

Otherwise we may assume that at least one aj # 0. Recall that

YD) 1/(c'“-aj)

mg™! ¥ (E"'-&J.)/Icm-onj!2 ;

p'(z)/p(z)
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take imaginary parts of (1.3) to find

0= Im(zcp'/p) ,
0 = In(e"[&;/1c"a, )
0 = Im(z"e" 1.7

m 2
ajl/lc -ajl .
Since at least one aj is non-zero the sum Z of positive quantities
may not vanish. Then if @ denotes the argument of a non-zero ¢

we have

Im{exp(i(mp-0))) = 0

from which the result follows. Q.E.D.

Note the two resulting equations for lz| are

R = mlclmil/(lcl'“tlajl)
which could be expressed as two real polynomials of degree 3n-2 in
|z|. However, for polynomials in 1" it might be reasonable to

restrict perturbations to polynomials in 1™ by causing appropriate

weights in the norm to become infinite. Then R({z]) becomes R(|z|™)

and the resulting polynomials are of degree (3n-2)/m in |

lm

g
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3. Counterexample

The previous proposition might lead one to hope that polynomials

with all zeros real would not have complex solutions to (1.1). The

following counterexample, produced by W. Kahan, eliminates such hopes:

Example. Let n=2 and p(t) = (r=-1)(1+1). 1If Zw.l < Wy,

then (1.1) has a complex solution

= + 3 - .
z =t i (2w]/w25 :
Comments. Some other surprising facts may be learned from this

one example.

We start by deriving all the solutions of (1.1). Let

W= (w]/wz) > 0. Then (1.1) is

s
\
] ‘4
N
£
¢
|

1
4
3
i
3

ICIZ(CZ-U - (|c|2+w)c(2c) =0

o', dividing by the solution ¢ =0,

M 5 . ad. e BnaT

zlz)?+ 2zt = 0 ;

D Sl PO

then

\ (Re £)(|c|%+20+1) = 0
| and

(Im c)(|c|2+2w-1) =0 .

By considering the various possibilities we conclude that the only

solutions of these equations are just 7 = 0 and, if w< %3
g = ti(]-Zw)]lz. The norm of the corresponding q's may be calculated
to be

NE 4c(1-s)w, , for a double zero at +i(1-2u)!/2

i

:

¥

n'% »
;i Iql2 =W, for a double zero at O,

§

¥
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So for 0 <wcx 13 the global minima are at = ii(]-Zw)]/z, not at
In this case, 0 represents a saddle point; it is where the

global minimum occurs if only real

z = 0.
4

¢z are considered. But on the

imaginary axis, the minima occur elsewhere, and a local maximum occurs

at ¢ =0 if only pure imaginary ¢ are considered.

0f course, there are other real polynomials with all zeros real
which have solutions of (1.1) which are complex but not pure imaginary.
It is perhaps surprising that an even real polynomial with some zeros
real and some pure imaginary may have solutions

z of (1.1) which are
neither real nor pure imaginary.

. K N

For instance, by appropriate choice
of weights so that the R(|z|) of (1.3) has the value 2 when

lz] = 1, we find that some solutions

=

¢t for the polynomial

p(r) = 1% -1

=y : &
ARy oADK W N R

are £ =0 and ¢ = (+1:i)/¥Z. We may further restrict the weights

.% so that these are the only «z's.

, Returning to Kahan's counterexample, recall the Lucas theorem:

.i the convex hull of the zeros of a polynomial contains all the zeros of
i its derivative. The present example shows that no such simple state-
[; ment may be made about the geometrical relationship between the zeros
'i of a polynomial and the solutions of (1.1). Some early experimental

‘§, results suggested that the convex hull of the origin and the zeros of

% the polynomial always contained the global minimum.

But the counter-
example shows that this is not always the case.

]
E . Yet the solutions of (1.1) do behave somewhat 1ike the zeros of
!

the derivative of the corresponding polynomial. Consider these symmetry

P MM
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Facts:

1) If p 1is real then F of (1.1) is real;
2) if p 1is odd then so is F;

3) dif p 1is even then so is F;

4) if all the zeros of p are multiplied by a constant phase

factor exp(i8) then so are the zeros of F. Thus there is no essen-

tial difference between a real polynomial and a complex one whose

zeros are symmetric about a line through the origin.

In contrast, consider this invariance of polynomials under scaling:
if the zeros of p are all multiplied by a scale factor, then all the

zeros of all the derivatives are scaled by the same factor. But if

the weights in the o's of (1.1) are regarded as fixed, then scaling
the zeros of p does not introduce a corresponding scaling of the
solutions of (1.1), which change in a complicated way. One could
fegard the weights as depending on the scaling factor, however.

15
for instance,

.~ . 2\n-j
Wy = € (u%)

where € is fixed and u 1is the modulus of the zero of p of

largest modulus, then a scaling change in the zeros of p will produce

a corresponding scaling of the solutions of (1.1). One could go

further and imagine that u = |g|, a function of the ostensibly
unknown . Then the o's are constant and the F of (1.1) takes an

especially simple form: it becomes a polynomial. 1In some of the

sections to follow this analytical "swindle" will be exploited.
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4. A Bound on the Solutions ¢

We will exploit Theorem (17,2a) of Marden {21} to bound the solu-
tions of (1.1). It is not immediately obvious how large those solutions
might be, relative to the zeros of the polynomials.

Marden's theorem concerns the location of the zeros of a linear
combination of monic polynomials of degree n. Let x(t)-Ay(t) be
that linear combinatioh, and let C(c,r) represent a circle of radius
r centered at c. C_(c_,r ) contains all the zeros of x and

S
Cy(cy,ry) contains all the zeros of y, The theorem asserts that all
the zeros of x-Ay 1lie in the union of the n circles Ck(yk,pk),
1<k <n, where

Yk = (cy-wkcx)/(]-wk)
and

oy = (ry+|wk|rx)/|1-wk|
and

- 2 1/n
wk - A €k .

The €, are the n nth roots of 1.

Our result is the following.

Corollary. If I“max‘ is the maximum modulus of the zeros of p,
then all the solutions ¢ of (1.1) satisfy

2
(4.1) Izl < 2n e, |
Proof. Rewrite {1.1) in a form appropriate to the theorem:
6 (2) = (Rl - Ryp(e) - 0

Then if R is held fixed, GR is in the proper form. Let the circles
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C, and Cy be crudely approximated by C(O,lamaxl). This circle

certainly contains all the zeros of p, and hence of p', as well

as 0. Then V= 0 so the circles Ck of the theorem are concen-

tric and only the radius of the largest matters:

2 LERTE . |
n max' '
[1-"VR7n ekl

Pk
Reilembering that 0 < R < n-1, it is clear that

- LA,
o ]_nm max

——la,,
1-YVo-1y/n ™

A

< 2n2|amax| .

Since any solution of (1.1) is a zero of GR for some positive

R < n-1, the bound is valid for all such solutions. Q.E D

The purpose of this crude estimate is just to show that the solu-
tions of (1.1) are bounded. The gross approximations involved might
lead one to doubt that the bound is realistic, and indeed for "normal"
polynomials the solutions do not seem to exceed l“max!'
However Wilkinson's polynomial of degree 20, discussed in

chapter X, has a solution for (1.1) at ¢ # -117.31; the norm has

vy ® 1/]pj12 which minimizes relative changes in the coefficients.
In this case |Cmax' exceeds 'amaxl by a factor of nearly 5.

Presumably by appropriate choice of norm that factor could be made

even larger -- how much larger is unknown,
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One might consider a type of iteration scheme: since the bound

(4.1) depends heavily on the maximum value of R, which we bounded by

n-1, any knowledge that reduces that Rmax should affect the bound

appreciably. But R is monotonic in |z] so Rax depends on the

bound on |z}, which is in turn dependent on Rmax' Clearly we could

reduce the bounds on |z| and R .y alternatingly. Unfortunately in

practice such an iteration seems to improve the bound so little as to

be scarcely worth the trouble.
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5. Propositions for Real Quadratic Polynomials

The example of section 3 was a counter to a tempting, but incor-
rect assertion. That same example could be regarded positively, how-

ever, as an example of the propositions of the present section.

Proposition 5.1. Consider a real monic quadratic polynomial

p(t) = 12-2ar+y .

Let u be the modulus of its largest zero. Then every solution ¢

of (1.1) satisfies |z] < w.

CRRNT IS ,t‘&'t‘..l PR TRV WSE. RS -

Proof. By examination of cases. Equation (1.1) may be written

-

2

(¢ -2ac+v)(|512/w]) - c(zc-za)(lclzlw] *1/W,) = 0 .

& s

Factor out ¢ to remove the uninteresting solution z = 0; then

- ,-“\-‘ .

letting w = (w]/wz) > 0, and taking real and imaginary parts leaves

the equations

—are .

(5.1) 1c]%Re ¢ + (20-y)Re ¢ - 2w = 0,
i {(5.2) Iclzlmc + (2u+y)Imz =0 .

The second of these equations is satisfied if ]clz = =(2uty) or

Img =0, providing two cases.

In the first of these cases y < 0 so the zeros of p are real
and

= la] + (aZ-Y)]/Z .

i

H

:

i U

!,

i But we may easily verify that
§

*

!




|c|2 = -(2uwty) < e

as claimed,

Imz =0 1in the second case so the solutions =z are just the

real solutions of (5.1), which satisfy
(5.3) a(z) = 23+ (2uy)-2mw = 0 .

g may have complex solutions but these do not satisfy (1.1).
We will prove the proposition by showing that g(-u) < 0,

g(+u) > 0, and the real critical points'where g'(z) vanishes are

contained in [-u,+u]. Thus the real zeros of g are bracketed in

[=u,+u] whether they be 1, 2, or 3 in number. The details, however,

depend on whether the zeros of p are real or complex.

Suppose first that a2 <y so the zeros of p are complex and

u = 71/2. Then

1/2

g(-u) = -20w(y '“+a) < 0

and

gl+) = +2u(y' /%) > 0 .

Furthermore the zeros of g' are t((Y-Zw)/3)]/2. When these zeros

are real they are less than Y]/Z in modulus since w > 0,

Now suppose that u2 >y so the zeros of p are real and

u o= |u|+(u2-Y)V2 .
Then

g(-p) = -u(uP42u-y) - 2as

g(+u) +u(u2+2w-v) -2 .
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It is easy to verify that

u2+2m—~( >0

and

lu(u2+20-v) | > |20u]

so g(-u) <0 and g(+u) > 0. And finally we may verify that when

g' has real zeros :((Y—Zw)/3)1/2, they do not exceed u in magni-

tude. 0.E.D,

Our next result is in a similar vein.

Proposition 5.2. Consider a real monic quadratic polynomial

p(t) = T2°201'+Y .

Then there is a solution £ of (1.1) in the smallest circle containing

both zeros of p.

Proof. The zeros of p are a:t(az-y)1/2 and the smallest
circle containing them has center a and radius laz-y|1/2. Therefore

the assertion is that there is a solution ¢ such that

lt-a] < |ab-y|V/2 .

The solution g = 0 satisfies the proposition if ¥ <0 or y> 2a2,

so assume henceforth that 0 < y < 202.

Recalling equations (5.1) and (5.2), we find that the only remain-

ing solutions are the real solutions of

g(z) = c3+(2u-y):-2w =0,
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Thus we must show that there is ¢ solution £ 1in [n,68] where

n=a-ly12, 0=at]edy|V?,

We do so by demonstrating that g(n)-g(8) <0,

Now
g(n)a(8) = a?(3loP-y] +of -v)% - foley| (JoPoy] + 302 -y + 2)? .
Suppose first that az > Y. Then
g(n)g(6) = -4(o’-v) (% +u? + 2u(2a®-y)) .

But the last factor is easily seen to be positive.

Suppose that a2 < y. Then
g(n)g(s) = -4(Y-02}(w2+2a2w+a2(2a2-y)) .

But at the outset we restricted vy < Zaz. Q.E.D.

This last proposition might le:d one to suppose that for any poly-
nomial p of degree n > 2, equation (1.1) has a solution in the
smallest circle containing two zeros of p. In section 7 this suppo-

sition will be shown to be incorrect, and a weaker conjecture will be

proposed.
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6. Swindle Results for Real Quadratic Polynomials

A method for evading certain problems arising from the n.n-
analyticity of (1.1) was briefly mentioned in section 3. Namely, each
weight in the norm was defined to be

= 2yn-j
W cjlc | .

Thus 9% and o, are constant and therefore so is R of (1.3).

1

e

j
% This amounts to an analytical swindle since the dependence of the wj

i; on L was not incorporated into the derivation of (1.1). None the

'3 less any solution of (1.1) is also a solution of

)

i (6.1) s(z) = ¢p'(z) -Rp(g) = 0

f% for some fixed R; the R depends on || in general, but not in the
! swindle case. In either case 0 < R < n-1.

_! It is useful to study the solutions of (6.1) for fixed R to see
é what light they shed on the original problem.

We start by noting that (6.1) has a solution ¢ = 0 only if

e

p(0) = 0. So the part of the previous theory that depends on a solu-

s

tion at 7 = 0 may not necessarily be true.

£

T,

Write the quadratic p as
2
p(tr) = t°-2ar+y

so a 1{s the arithmetic mean of the zeros of p and y is their

product. Then the zeros of s are

1

¢ v (1R = ARZEL Ry
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In the limiting case R+ 0, the <'s approach o and 0. In con-

trast, as R > 1 the t's approach iy]/z.

So, in particular, if

y < 0, corresponding to the zeros of p being real and opposite in
sign, then in the second limit the zeros are pure imaginary. This
situation corresponds to the counterexample of section 3.

Two results from the previous section that the 1imiting cases
support are that 1) the magnitude of the z's does not exceed that of
the larger zero of p, and 2) there is always one ¢ in the smallest

circle containing both zeros of the quadratic p. These are correct

inferences.

Proposition 6.1. Let r be any solution of (6.1) when p is

a

real quadratic polynomial. Then |z| does not exceed the magnitude

of the larger zero of p.

Proof. Consider four cases: the zeros of p are equal; the zeros

of p are complex; the zeros of p are real as are the r; the zeros

of p are real but the z are complex. The first case is trivial

and the other three cases are similar in proof. For the last case, for

instance, we have

(-RZZ+R(2-R)y <0  and ol >vy.

Obviously y < 0. We wish to compare |z| with u, the modulus of

the larger zero of p:

el = AR (=)

u= lal*-/ézj; .
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Thus

2

T lcl2

= 2a2+2[a[»/a?_-—Y—- ZY(—;—:—E—)

which is a sum of non-negative terms, since y <0 and R< 1, The

last term is positive so |z| < .

Proposition 6.2. The smallest circle containing both zeros of a

real quadratic p contains a solution of (6.1).

Proof. As in the previous proposition there are four cases.
Below we sketch the proof of the case in which both zeros of p are
complex. Then a2 <y, Y>>0, and both z's are real. Ue wish to

show that |z-a| < (y-a )]/2 for one of the z's.

Now
G =Tass (2 R)a A]/Z
where
N C R 2 2 R
Az (Fp)Ta" +5 gy
Then
jg-al? = () %a® + (FER%E + (v F R’ ?

and we want to show that for either + or -

2
Fan’? < (1-R) (v-o) - S

If we choose the sign that makes +a negative we find that the last
inequality is equivalent to y > az, which is what we assumed.

The proofs of the other cases are similar. 0-E.iDi

As a tool for analysis the swindle does not seem to help much in

the quadratic case. A1l of the propositions about quadratics are

Q. b B
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proved just as easily without the swindle. It ig never the less help-

ful to verify the similarity of the theories in the quadratic case,

since it is difficult to extend any resylts t

0 higher degrees without
the swindle.
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7. The Smallest Circle Containing Two Zeros Need Not Contain a ¢

In sections 1 and 5 we learned that 1) there is a real ¢ between

any two real zeros of a real polynomial p, 2) a corresponding result

holds for complex polynomials symmetric about a line through the origin,

and 3) the smallest circle containing the two zeros of a real quadratic

polynomial contains a z. Furthermore, when o is a complex zero of

a real p with |Re a|l < |Ima|, then ¢ =0 is contained in the

smallest circle containing o and its conjugate. In section 8 we will

see that when a polynomial with a double zero is subjected to a small

perturbation causing the double zero to split, the smallest circle

e T e
AL N N R e M

containing the split zeros contains a 7. From these facts we might

conclude that the smallest circle containing two zeros of any polyno-

Pk R Pt s

mial p contains a z.

This conclusion is supported by all the experimental results

i AR -

reported in chapters IX and X, using norms which measure absolute or

relative changes in the coefficients of p.

o e

But an investigation to

settle this specific question turned up a counterexample, given below,

and led to a further conjecture which is not yet resolved.

) The counterexample was discovered by computationally exploiting

the analytic swindle described in sectidn 6. A crude optimization

program varied the zeros of a real cubic polynomial and the fixed

constant R in order to make the <z's lie as far as possible from the

center of the smallest circle containing the two complex zeros of the
polynomial. A polynomial p(t) was found with zeros « at 1.0 and
.224 + 1747, When R = 1.987 the zeros of s{t). as in equation
(6.1), were -.830 and .424 + ,099i; see Figure VI.1.

Thus the

complex z's are just outside the circle containing the complex zeros a.
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The swindle was used because the polynomial equation s(t) = 0
may be solved equickly. Our real interest, of course, is in finding

an example without using the swindle. So another crude optimization

program was run with p(t) fixed but with the norm weights allowed to

vary in such a way that ¢ = .424: .174i remained a solution of (1.1).
Surprisingly enough, the program quickly converged to a suitable

counterexample: Let the weights be 1, 1000, and 10000, Then

(1.1) has no solutions inside the smallest circle containing the a's

.2241‘.1741. The closest z's are at .4245+ ,0993i and 0.
Figure VI.2.

See

Thus we must discard the conjecture that the smallest circle

containing two zeros of a polynomial contains a z. That should come

as no surprise, however, for the corresponding conjecture about deriva-

tives is not true either: the smallest circle containing two zeros of

a polynomial need not contain a zero of the derivative. Rather the

following is known:

Proposition. Let a circle of radius p contain m zeros of a
polynomial p of degree n. Then there is a zero of the m-]th

derivative of p 1in the concentric circle of radius

o csc((n/2)/(n+¥1-m)) .

This proposition is stated in a stronger form and proved by

Kahan [17). The proposition suggests the following revised

Conjecture. Let a circle of radius ¢ contain m zeros of a
polynomiai p of degree n. Then there is a solution of the appro-

priate equation for the nearest polynomial with an m-tuple zero within




pr—

|
i
£
[
|
o

T B

I, ..

LN

i

: mm\‘-.n—;gemw [o

the concentric circle of radius
p csc((n/2)/(n+1-m)) .

Thus real cubic polynomials that have a complex conjugate pair of
zeros o should have a solution ¢ for a double zero such that
|c-Rea| ¢ ¥2|Im a|. None of the examples we have encountered or

constructed have violated this revised conjecture.
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Figure VI.1. Counterexample based on swindle.

3 No ¢z lies inside circle.

. pla) = 0, s(z) = 0, R = 1.987.
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Figure VI.2.
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Counterexample without swindle.
No ¢ lies inside circle. p(a) = 0,
F(z) = 0, other z's are fa

wp =1, Wy = 1000, w5 = 10000.




8. Infinitesimal Location Theory

This section provides a bridge between the location theory of
previous sections and the perturbation theory of the next chapter. In
this section we seek to answer the question: "Where do the solutions
z of (1.1) go when a polynomial with a double zero is perturbed
infinitesimally?"

Recall that if a is a double zero of a polynomial p then it
is a solution of equations (1.1) and (6.1) -- as would be expected,
since a place where no perturbation is required to get a double zero
is obviously a critical point for norms of such perturbations, Most
perturbations of a polynomial with a multiple zero will break that
multiple zero into i11 conditioned simple zeros, but we shall see that
the solution of (1.1) only moves in a well conditioned manner when
subject to such a perturbation.

Let
p(1) = (t-0)%(1) , qla) 0,

be our starting polynomial with a double zero and a solution of (1.1)

at o. Let
p(t) = p(z)+8eh(r) , h(a) #0,

be p subject to a perturbation which is a linear function of &e.
Also a+6a will represent a zero of p perturbed from «. Then

expanding in Taylor series,

0 = pla+sa) & %(Ga)zp"(a) + selh{a) + Sah*(a)) .
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Simplifying, we find
(8.1) sa t + ((-h(a)/ala))se) /2,
the classical result that a double zero tends to divide into two simple

zeros according to a fractional power of the perturbation.

o is also a zero of

f(z) = R(g)p(z) -zp'(z) .

Let a+6z be the perturbed solution when p is perturbed to 5. He

wish to find a Taylor series expansion for &z 1in terms of 6e. R s

not analytic in g, so we must use the fact that it is an analytic

real function of the real variables Re z and Im g. Eventually we

find that

(8.2) 5z = {(R(a)h(a)-ah' (@))/(2aq(a))}se + 0(6e?)
provided a#0

and R(a)h(.u) -ah'(a) # 0.

The last condition represents a kind of "orthogonal" perturbation h

which does not affect the solution ¢ of (1.1) to first order.

Comparing (8.2) and (3.1) we see that for a typical perturbation

h, the zeros of p move away from a much faster than the zero of .

Since those i11 conditiored zeros of p are moving in opposite direc-

tions, the smallest circle containing them will also contain a solu-

tion of (1.1) whenever p is close enough to the manifold of polyno-

mials with double zeros.
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For further comparison, consider the change in the zero of the

derivative of p. If a+686 denotes the zero of p', we find that
86 = (-h'{a)/2q(a))se

provided h'(a) # 0. So the zero of the derivative also changes
linearly with ée. If (R(a)h(a)/oh'(a)) is sufficiently small --
as must occur if o 1is sufficiently close to zero -- then &z and

86 are nearly the same. Unfortunately 6z and &6 are quite

;; different in general so &6 may not serve well as an estimate of &cz.
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CHAPTER VII
PERTURBATION THEORY FOR MULTIPLE ZEROS OF POLYNCMIALS

1. Introduction

In this chapter we will recall the standard theory of perturba-
tions of multiple zeros of polynomials, discern its limitations, and
propose a more satisfactory theory which reflects the insights gained
from the research described in previous chapters.

To recall the classical theory, start with a polynomial with

multiple zero a:

p(1) = (t-a)™q(1) , qla) #0 .

e AL, o MO v T iin e b

]

The condition q(a) # 0 means that the multiplicity cf a is pre-

cisely m. He wish to see how an arbitrary perturbation of p affects

a. In general a will tend to split up into m distinct zeros.

e oD B n

v

Apply a perturbing polynomial er(t) of degree z£ most n-1 to

,i get

‘ p(1) = (1-a)q(1) +er(x) .
3

5 If (1-a)™ divided r(1) then the problem would be uninteresting

% since the m-tuple zero o would retain its identity regardless of the
? perturbation. Similarly if (‘r-a)k divided r(t), 1<k < m-1,

; then the k-tuple zero a would persist after perturbation and the
=§ only interesting problem would be the fate of the zeros ¢f

§ (t-a)m'kq(r)4+(r(r)/(r-u)k). Thus we may assume without loss of

generality that (t-a) does nct divide r(t), i.e. r(a) # 0.

For our purposes the degree of p 1is presumed to be known and

E

§ fixed. Since we are only interested in the 2eros of p, there is no
¢

*

¥
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essential loss of generality in restricting the degree of r to be no
greater than n-1, because a small perturbation er of degree n
would be equivalent to some other small perturbation er of smaller

degree.

Let a+n represent a zero of the perturbed polynomial p:
(e Platn) = 0 = n"q(atn) + er(a+n) .
Thus
e = n"[-q(a*n)/r(atn)] .

However our interest is in expressing n in terms of €. Since r

and q are polynomials they may be expanded easily in a Taylor series

about a; thus

€ = -nm[q(a)/r(a)] + higher order terms .

Then

n= [(-r(a)/q(a»e]1/m + higher order terms .

The m different mth

roots define the different perturbations n
corresponding to the m 2zeros of P derived from the m-tuple zero «o
of p.

Thus we seem to have a series in fractional powers of ¢ when
m> 1. In the next section we will indicate a rigorous justification
for this result and explain a constructive method for the higher order
terms.

Our overall goal is to find series that converge rapidly, since

we do not wart to calculate more than one or two terms. Consequently

we want series that converge over the largest possible region so that

167
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convergence will be fast in the region of interest. If the region of

convergence is not much lairger than the region of interest, convergence

is so slow there that the series "fails" in the sense that it ig not
practically useful. A worse failure arises when the region of conver-

gence does not contain all of the region of interest.
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2. Classical Theory of Expansions of Algebraic Functions

In the previous section we indicated how to solve

(2.1) f(e,n) = n"qlatn) +eratn) = 0,

subject to

fdegq=n-m<n.
degr<n-1,
r(a) #0,
\Q(a)#()’

(2.2)

for n in terms of a series in fractional powers of e. Now we will
cite the classical results which justify our approach and explain how
to construct that series.

f{e,n) = 0 s an example of an algebraic equation defining alge-
braic functions € or n in terms of the other. It is easy to get
€ as a function of n; our goal is to construct n as a function of
€. We will recall certain results from standard texts, changing the

notation to suit our problem, and omitting hypotheses which duplicate

our assumptions (2.¢).

The first result is *

Weierstrass' Preparation Theorem [22, p. 105]): There is a

ne ighborhrod

le] < 0y » Inl < 0y »
such that '

f(C.n) s [EO(C) + E](c)n $ee 4 Em-‘(c)nm.] +nm]g(g.n)
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for functions EO’El""’Em-l which are analytic in that neighborhood
and g which is analytic and never vanishes in that neighborhood.

Eg() = E;(0) = --- = E_,(0) = 0.

Expansions of Simple Zeros

Consider first the case of expansions of a simple zero. The next

result is a consequence of the preparation theorem:

Implicit Function Theorem {22, p. 109]: When m =1, then there

is a neighborhood

le| < 0y Inl <o, »

such that f(e,n) = 0 has a unique root n = n(e) for any e in the

neighborhood. n(e) 1is single valued and analytic in the neighborhood
and n(0) = 0.

In other words, in the vicinity of a simpie zero a, n may be
expressed as a Taylor series in €. The theorem says nothing about
the size of that vicinity -- it may be quite small.

If all tihie zeros of p are simple, then there is a neighborhood
in which the n zeros of p(t)+er(r) are all simple and they may be
expressed as n Taylor series in ¢, defining n analytic functions
of €.

Given a function n(e) defined by the polynomial equation
f(e,n) = 0, a singular point € My be defined for our purpose as
one for which the discriminant of f(eo,n) vanishes. The discriminant

of a polynomial with n zeros G50y --5Qy  MAY be defined {10, p. 115)

n
to be
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e) = M (a-a)?.
1<i<j<n
D is a function of e because the zeros a; are. D(e) may also be
expressed [12, p. 39] as a polynomial in the n-coefficients of f(e,n).

Then at a singular point €y p(r)+—aor(r) has at least one
muitiple zero. Bliss [1, p. 29] shows that the radii of convergence
of the n Taylor series for perturbed simple zeros are at least as
large as the distance to the nearest singular point. Thus when per-
turbing p(t), with all zeros simple, in the direction r(t), the
expansions in powers of € converge for 'e| at least as large as
leol in the nearest polynomial p(r)-+eor(r) on the manifold of
polynomials with double zeros. When p and r are real we must
remember that complex € must be considered when computing radii of
converyence.

It is usually the case, moreover, that the radius of convergence
is exactly the least le| such that p(t)+er(t) has a double zero.
Of course if p and r have some zero in common then the "series"
for that zero will converge everywhere. But in the usual case when
the zeros of p and r are distinct, the Taylor series which
coalesce to a multiple zero of pi-eor can not converge for

le] > ey

Expansions from a Singular Point

What if we start from a singular point, whore p(1) has a multi-

ple zero? The answer is contained in
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Puiseux's Theorem {10, p. 118]: Let m > 1 1in (2.1). Then

there is a neighborhood

I€l<0-|, lnl<029

and an integer k such that n is an analytic function of 8,
k

6° = €. The k values of 6 determine k analytic functions.

where

Since we require that r(a) # 9 we will find that there are

k = m distinct branches, defining m Puiseux fractional power series.

As before, the radius of convergence depends on the distance to the
next singular point in any of the directions er as e takes on
complex values.

Newton's polygons may be used to transform f into a form from
which it is convenient to construct the actual expansions. For details
the curious may consult Bliss {1, p. 35} or Kung and Traub {40] for a
modern algorithmic account; the nrocess involves expanding f(e,n) in
a Taylor series in both variables ¢ and n, and then plotting points

corresponding to the terms with non-zero coefficients. Thus
(2.3) f(e,n) = q(a)eonm + r(a)e]no + other terms .

Because aur discussion is based on the constraints (2.2) the Newton

polygon has the especially simple form shown in Fiqure VII.1. Bliss

shows how to use the Newton polygon to discover the substitutions
€ =0 and n = 6
which transform (2.1) to

(2.4) ¢"q(a+86) + r(a+s) = 0 ,
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powers of n T

Q(a)eonm ~ (0,m)

powers of € —-

Figure VII.1. Mewton's polygon for
f(e,n) = nq(atn) + er(a+n),
q(a) # 0, r{a) # 0.

(1,0) ~ r(a)e]no
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Bliss shows that all the expansions of interest are obtained from

(2.4), which may be solved easily by the method of substitution or by

faster methods [40] to express ¢ as a Taylor series in 8.

Define

x(1) = -r(1)/q(7)

and suppose

2

6=A+B0+ Col+0(0%) ;

then we find that

R TP I

AT = x{a) ,
, B = (A%/m)(x'(a)/x(a)) ,
= (A%/2m) &8 e (mXlaly?,

x(a)

It does not matter whether we use one value of A and m values of

6 or vice versa. Higher order terms are tedious to derive for

general m.

- o - r - .
. ‘-ﬂ l‘ IS B Tt NS

For m =1 the expressions become

:’ n=Ae + Be2 + Ce3 + 0(84)
| where
3
: A= x(a) ;
» (2.5) B = Ax'(a) 3
C =

= AU (0))? + JAx"(a)

For m =2, however,

L ST T a7 e

n=hAe’? 4 Be + ce¥? 4 0(ed)

where

T A W PP MWIDOT
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A = x(a)
(2.6) = (o)

B
C = A0 () + (n' ()% (2x(a))) .
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3. Failure of Classical Taylor and Puiseux Series Expansions

Suppose we consider perturbing the quadratic polynomial (1-1)2

in the direction toward (1-0)2, i.e.

B(t) = (1-1)2 +e(22-1) .
Then the zeros of p are

1-¢¢ /é2~e =1 -¢ +ie]/2(]—£)1/2 .

2

We could expand (1-5)]/2 in a Taylor series 1 -%ﬁ -%ﬁz--- yield-
ing Puiseux fractional power series for the zeros; those series can
not converge outside a circle of radius equal to the distance to the
nearest singu'arity of (1-2)1/2. That singularity is the branch
point at ¢ = 1.

Thus when we consider perturbations of p from one point on the
manifold of quadratic polynomials with a double zero toward another
point on that manifold, the fractional power series expansions of the
perturbed double zero fail to converge rapidly as that manifold is
approached. The same slow convergence occurs whenever we attempt
expansions from one point on the manifold toward anofher noint on the
manifold. For practical purposes, a power series that converges
slowly is worth 1ittle more than one that does not converge at all.

Figure VII.2 represents the space of monic real quadratic poly-
romials. Each point in the plane corresponds to such a polvnomial.

The coordinates of a point corresponding to

e R
p(z) = 1 * Pt P,

are the coefficients Py and pz. The curve is the manifold of
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i Figure VII.2. The zeros of polynomials in the shaded

. region may be represented by convergent

B Puiseux fractional power series from *,
The 2eros of polynomials on the tangent

line may be represented by convergent

finite integral power series from =,
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polynomials with double zeros; its equation is p.|2= 4p2.

The * marks the polynomial p(t) = (r-1)2 whose coordinates
are py = -2, Py = . IWe can imagine perturbing p to any other
polynomial p in the space; then we may ask: can the zeros of P
be obtained from the zeros of p by convergent Puiseux fractional
power series in e(p-p)? The shaded region in Figure VII,2 is the
region of points p for which those fractional power series do con-
verge. That region is bounded by the union of the parabola p$== 4p2
and another parabola, p$+-8p1-+8 = -4p2, which is congruent and
osculatory to the first. Puiseux fractional power series expansions
from * will not converge to any point outside the shaded region.
The shaded regions were determined by considering real perturbations
in real directions; that turns out to be sufficient for this special

case of a real quadratic with a double zero. For more general poly-

nomials it would also be necessary to consider complex perturbations

in order to properly delimit the shaded region.
What happens on the indicated line tangent to the manifold at *?
That 1ine represents polynomials one of whose zeros is always 1. Then

the appropriate "expansions" for the two zeros of
(x-1)%
when perturbed in the direction
12+or-o-1

are 1 and 1-¢(p+2). This finite expansion converges everywhere

on the tangent line.
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Notice that there are polynomials arbitrarily close to * such

as

(t-1)% - 61458 -1)

whose zeros can not be represented by convergent Puiseux fractional
power series from *,.

In contrast to the case of starting on the manifold, suppose now
that we start off it, but near it. Then the regions where convergence
of conventional Taylor series may occur are circumscribed indeed; see
Figure VII.3 for examples.

In conclusion, we see that the classical Taylor and Puiseux
series approaches for expressing changes of zeros in terms of a para-
meter of the perturbations is limited in applicability since neither
series will converge beyond the nearest singularity of the function
they represent. In our case singularities amount to double zeros. In

the next section we will see how to alleviate this problem,
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The zeros of polynomials outside the shaded
regions can not be represented by convergent
Taylor series from *. © marks a polynomial
close to * whose zeros can not be so
represented.
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4, Why Find the Nearest Polynomial with a Muitiple Zero?

Suppose that the output of a physical system may be modeled by
the zeros of a polynomial. p whose somewhat uncertain coefficients
may be computed from experimental data. Suppose furthermore that
polynomials with multiple zeros lie within the region of uncertainty.

We may desire to determine how the zeros of the polynomial can
vary as the coefficients vary within their uncertainty. A natural way
to do this is with a Taylor series expansion of the type described in
section 2, but such an approach is doomed to fail when ﬁ is near a
pejorative manifold. Such expansions are not valid across the mani-
folds of polynomials with multiple zeros. Thus we can not study the
variation of the zeros of p subject to all perturbations that
interest us if the ball representing our uncertainty intersects a
manifold. Furthermore the convergerice rate of the expansions we do
have bécomes unacceptable as they approach their radius of convergence.
Thus we would 1ike to find an expansion process that is convergent in
a ball that is much larger than the uncertainty in p. Then onlylor
2 terms of an expansionwouldbe needed in order to bound the variation
in the zeros as p moves within its ball of uncertainty. See
Figure VII.4.

In the rest of this chapter we will describe a new method for
bounding variations of zeros that may be used in situations 1ike that
of Figure VII.4. This techriique is based on finding a polynomial
p=p+6p which is close to p and has as high a multiplicity
configuration as any in the bzll of uncertainty. A1l its zeros are
well conditioned, reflecting the fact that it is far from the next

higher manifold. p would usually be found by one of the methods
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described in chanters II-V. When such a P is found, the technique

to be described exploits the manifold on which p lies to obtain

bounds applicable over the entire region of interest,
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DA 7 AT
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‘ “eow® 4
* next higher

manifold
p's ball of uncertainty

Figure VI1.4. Moving to a manifold to 1mprove the region of

convergence. Tayv’or series expansions from p
converge only in the shaded region. Puiseux
fractional power series expans1ons from

p = p+6p converge in a large region as in
Figure VII.2 which however omits points
arbitrarily close to p. The new expansions
from p converge in a region extending to the
next higher manifold and including all of p's
ball of uncertainty,
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5. Resolving Expansions into Components

Our task now is to find a simpler method for describing the
changes in the zeros of a polynomial due to perturbations.
First consider a polynomial on the manifold of polynomials with

one m-tuple zero:
p(t) = (t-a)"q(1) ,  qla) £ 0.

We want to perturb p to another polynomial on that same manifold:
p(r) = (r-a)"a(r) , 3@ #0 .

The classical fractional Puiseux series approach of the previous
section attempts (and fails) to get from p to p along a straight

line in the space .of polynomials of degree n:
B(1) = (t-a)"q(1) + el(r-8)"§(1) = (1-c)"q(1)] .

See Figure VII.5,

We will instead move along the manifold, regarding it as a

convenience rather than a barrier:

p(t) = [t - (a+e(a-0))1"q(1) +e(§(1)-q(1))] .

Now the multiple zero stays multiple, and the change in the multiple
zero may be easily expressed as a function of e. If the multiple

zero is a+n then

n = (g-a)e

which is certainly convergent for all e. The changes in the other

zeros are described by Taylor series in the classical manner. These
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manifold

Figure VII.5. Two ways to get from p to p. The c]gssica]
Puiseux expansion goes directly via p. The
new expansion goes along the manifold via p.
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Taslor series will converge in some region in the space of polynomials
of degree n-m. That region is determined by the locations of mani-
folds of polynomials with multiple zeros in the n-m dimensional
space. These manifolds correspond to manifolds of polynomials with
more than one multiple zero in the original n dimensional space.

; For a specific example, if we start with a polynomial with a
double zero, so m = 2, we can expand the zeros along the manifold
un:il we reach a submanifold containing polynomials with two double
ze~0s, or one quadruple zero, or some other configuration that implies
a ﬁu1tip1e zero in q+e(g-q). A submanifold of polynomials with a
single triple zero, however, would have no effect on the expansion,
fo~ a triple zero in p implies only a simple zero in q+e(g-q).

Obviously this approach can be extended to polynomials with

several multiple zeros. To g:t from

m,
((e-ay) o)

n

p(t)

to

n

- m. ~
(M(x-5;) 1 )3(x)
1

p(t)

just let

m.
p(r) = (M- (o + e(6;-ay))) )+(a(1) +e(@()-a(1))) .

Suppose now that we wish to expand from a pclynomial on a mani-
fold to a polynomial off that manifold. As we saw in the previous
section, a straight Taylor series expansion may be Timited in appli-
cability hy the presence of the same or other manifolds. From our

present vantage point it appears that the procedure most likely to
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succeed would be to expand along the manifold to get as close as pos-
sible to the off-manifold polynomial we seek, and then expand "ortho-
gonally" directly from the manifold to that point with Taylor series.
We would thus minimize the effect of nearby manifolds on the conver-
gence of the Taylor series. Figure VII.6 illustrates the notion.

There may still be no reasonable way to expand from p to every
polynomial of degree n. For instance consider the situation in
Figure VII.7. A self-intersection singularity, corresponding to a
polynomial with two double zeros, means that it is impossible to
expand from p to p. If our problem were, however, to expand from
y to P, it might be possible to do so by findinga p on y's

manifold of polynomials with two double zeros.
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{

self-intersecting manifold

Figure VII.7. There is no reasonable way to expand from p
to p, or even to p.
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6. A Practical Technique for Bounding Changes in Zeros

In the previous section we introduced the notion of expanding
along a manifold before resorting to conventional Taylor or Puiseux
series techniques. In order to have a technique usable for hounding
changes in zeros as coefficients vary, we need to overcome two
problems:

1) Apparentiy it is necessary to solve the problem of finding
p, the nearest point on the manifold, for every p for which we want
an expansion. As we have seen tihis is a difficult numerical problem
that is even more intractable symbolically.

2) Our expansions have always been defined in terms of a direc-
tion r(t) and a size parameter e. We would 1ike to state the
expansion directly in terms of the perturbing polynomial without
introducing the additional parameter e.

The second problem may be solved fairly easily by letting e go
to 1 at the end or by ignoring € altogether. We find that the term
that was attached to the kth power of € contains powers of r that
are always greater than or equal to k, and thus we can construct a
series in r -- whether r is represented by its coefficients, its
zeros, or the value of r and its derivatives at some point, The
next section contains examples of such series.

As for the first problem, we might settle for §, an approxima-
tion to p that can be expressed symbolically. § should be a satis-
factory substitute in regions where the manifold is not too wild.

Figure VII.8 illustrates the approximation. Instead of p we
could compute a projection § of P on a tangent surface and map $§

to a polynomial § on the manifold. We hope that § is reasonably

close to p.
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Figure VII.8. As a practical matter, the new ex

get from p to P via § rather than p.
polynomial for which p

nomial on the manifold.

pansion must

p is a
is the closest poly-
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Given p and p, S is uniquely determined by the norm, but
there are many possible ways of mapping from the tangent surface to
the manifold. Unfortunately there is no simple way of insuring that
s =p when p s already on the manifold. Any discrepancy in this
case is intolerable because it leads to the situation in Figure VII.9
with its familiar problem of short radii of convergence.

Any expansion technique for arbitrary p must somehow recognize
when P is on the manifold. A vanishing discriminant is ~~ example
of a condition characterizing polynomials on the manifold. But such
characterizations are too complicated to be useful.

The notion of expanding along the manifold may still be put to
good use, however, if we only seek bounds on changes in zeros rather
than explicit expansions in terms of a perturbation. Thus given p

with zeros e,I of various multiplicities, we may ask for bounds on
lei‘éil

for zeros 61 of polynomials § such that Kp-pl < A. See Figure
VI1.10. The variation of éi with respect to 6; can be thought of
as having two components, one due to motion on the manifold and one
due to motion orthogonal to the manifold. If we can bound these
changes separately and independently then we can add the bounds to get
the overall variation.

Tsking a closer ook at the components of p-p, recall that

p(1) = (r-a)"q(1) ,
plr) = (1-3)"a(x) ,

where

)
i
l
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manifold

How do the zeros vary as p yaries within
the small ball centered on p? A bound may
be computed by studying the variation in the
zeros as p varies within the larger ball
centered on p.




195

a + 6a

Q1
"

LN
"

qQ + 6¢ .

q 1is a monic polynomial of dearee n-m; &q 1is not monic and is of

degree at most n-m-1. Then

j m . ,

: B-p = (-a)a(x) + J (3)(r-a)™(aesa) (1) (-80)’

: J=

i

f; where (?) = m!/(j!(m=-j)!). We will mostly be interested in the

e SR

infinitesimal case for which we need not be concerned about the higher

y order terms.

s

Summary of the New Technique

MR s

Before looking at details we summarize the new technique.

We are given a polynomial p with a norm and a bound on the

-

uncertainty in p. We want a bound on the corresponding uncertainty
! in the zeros of p.
3 The ball representing polynomials practically indistinquishable
‘ from p contains some polynomials p with multiple zeros. By the
numerical means discussed in chapters IIl to V, we locate the poly-
nomial p nearest to p with all zeros well conditioned; some are
therefore multiple. Then we may determine a ball about p that con-

tains the original ball about p and which is usuaily only slightly

larger. Then we may bound the variation in the zeros of polynomials
p in this second ball,
To do so we first construct symbolic expansions for the changes

in *he zeros of p due to moving to another polynomial p on the

)
:
i
|
§
;
?
3
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same manifold but within the second ball (Figure VII.10). For the
multiple zeros & these expansions from a have only two terms but
for the simple zeros B these expansions from B are Taylor series
in the perturbation 4q.

Now we compute expansions from P to points p which lie on the
planes normal to the manifold at p. These symbolic expansions are
Puiseux fractional power series to get zeros & from the multiple
zeros & and Taylor series to get zeros £ from simple zeros B&.

The series are in p-P which is orthogonal to the manifold at 5.

Then we substitute, again symbolically, the series for & and B
in the second sets of series to obtain series for o and & which do
not contain & or B. Finally we may convert the numerical bound A
on the size of the second ball into numerical bounds on the terms of
the series for a and B.

It is essential to study an example to understand the technique.
The example given in the next section is simplified but contains the
essential ideas.

The method just described ought to be compared to one based on
the results of Brian Smith (42). Smith uses Gerschgorin circles to
obtain bounds for the zeros of a polynomial subject to urcertainty in
its coefficients. Smith's bounds are easier to compute than those
based on expansions, but they may be unrealistic by a factor that is
proportional to the degree of the polynomial, However, they are valid
for finite as well as infinitesimal perturbations, unlike the new
method. Comparative evaluation of the two bounding methods must be

postponed until the new bounds can be computed automatically.
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Notation

Recall the vector notation of chapter I. He will represent gq

by a vector of dimension n-m+l and 8q by a vector of dimension n-m.

Corresponding to polynomial multiplication of ¢q by (t

-a) define
(1 1)
- 1 0
Py = = > n-m]
1
0
. -y
T J
& i
n-m

Then corresponding to polynomial multiplication of qQ or P

189 by
(t-a)m'] define

[ o |
-(m-1)a
. - ]
. ) ~(m-1)6
P = a
m=1 (~q)™! ) &
L 0 (a)m'] J J
N )
Y
n-mt+]

Then to first order

-~

p-p = Pm_]P]Gq - um_]qéa .

In chapter VIII we will see thet an "

p has the form

orthogonal" perturbation to

-~

B-p = W A%sg
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where A is the m-1 by n matrix

E*

€*D

T2
i

0 PR}

g2
1 g = ("1 a2 ... 1), which depends on &, hence the ~ in A,
This A should not be confused with the m by n+1 matrix A of

chapters III, IV, and V. A or e without = means & = a. &% is

an m-1 vector which is infinitesimal 1ike 6&q and éa.

To first
1

order W A*s% = w']A*él, S0

ot

¢ m-1"1

e R o o A R i Ml . i

WAL+ P 6q =P qsa

& N-lA* [ 82
T* Pm-1P1 8q | = Méh .
?i -um_1q Sa

The matrix operator M 1is n by n and invertible so a specific infini-

tesimal perturbation &p may be mapped into &%, 8q, and ¢&a, the

B 3 ot R

components of &h.

We would 1ike to define a region in Sh-space whose image, mapped
into &p-space, is the ball l16p|w < A. Obviously that region is just
5 {sh|ishl, <2}

where Iéth g IMéhlw. For infinitesimals with quadratic norms this

3 approach is practical.
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Best Possible Bounds for Changes in Zeros Dug to Variations

Over an Infinitesimal Ball

To see how to get the infinitesimal bounds in a series expansion,

let
(6.1) napnfV = Sp*MSp = Sh*M*WMSh = Sh*Hsh = nshuf1
where
alax 0 0
U 0 P, *XP, -mP.*Xq
ek
0 -mq“XP.I m qQ*Xq
and
X=P WP

The zero entries in H arise because APm_] =0,
Suppose we want to compute the first two terms of an infinitesimal

bound for the zeros o of
B(c) = p(1) +8p(x) = (t-a)q(t) +&p(t) .

The change due to the move frem p to p is just &a. The orthogonal

1 1

direction is W 'A*S%L = W 'ed) where e* is the evaluation functional

for o and 6\ 1is a scalar. Then nsing (2.6),

N'1e 1

x(1) = 62 i ,

v

a-a= /x{a] + %x'(a) + .

1

But x(a) = ¢ (W 'e(a))/q(a) which is just a constant Ny times i

Likewise x'(a) 1ds just a different constant A7) times .. Thus

4 -

Soas A 2e (00800 4

2
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* How large can these terms become, given that ldhnH < 4? The max imum

value of |6Al2 is Az/(eEW']ea) so for the first term,

Y4 1/2
% (GA)VZI < [ - g
| ! —'¥(eaw 1em)1[/2

As for the second term,

) ///ff e Y2
(v, 0 1)f8a|] < 1y, 0 Dha = Vly, 0 DH[ 0] .
: 1

So

Such bounds are achievable by &h satisfying nGhIH <4 and soare
best possible.

A Region Circumscribing an Infinitesimal Ball

The method just outlined is best possible for perturbations that

are infinitesimal or essentially so. Sometimes we may be content with

bounds that are not optimal but hopefully are realistic.

To that end rewrite (6.1) as

ndpls = §g*Vég

where
1 00
V=101 vi{,
0 v*
(91*xpl)‘1/2p1*xq
v’-
(q*xq)'’¢
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and

W/ 2pxsy

5 = (P]*XP])1/26q
m(q*Xq)]/zéa

Then we might let
W 2asar, < v <o

1/2
n(P]*XP]) sal,
llm(a*Xq)V2

Ile_1P16q|IN <8,

Sal, = miP_,al f8al <4 ;

but depending on v, we might find that the image of the region so

defined does not contain the enti-e ball lsph < A. If q-= X"ea

then v = 0 and the image is just the ball, while if q = P]u then

Ivi =1 and the image is not an n-dimensional ball or ellipsoid but

something of lower dimension which can not possibly contain the ball,
To see what is going on, suppose lsplw = A exactly and 62 = 0.

How large can 8o and 6q become? lle have

[ eyxp )V Zsq )1 v [ (pye) Vs
& = 1/2 1/2
m{q*Xq) ' “sa vy 1 m(q*Xq) '/ “sa
0

Gq*(Pl*XPl)Gq + mzq*XqIGal2 = Az/minev

where "minev" means the smallest eigenvalue of

[ i ]
vl
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But the eigenvalues of that matrix are just 1, of m.itiplicity n-2,

1 -ﬂvlz, and 1+-nvﬂ2. So at worst

2
|5“|2.ﬁ 7 .

m q*Xq(]-Ivlz)
_ar
]'IV'Z

2

Ile_]P.lsqllw <

where -1
* * *

2 _ @ XP](P] XP]) Py*Xq

Hvﬂ2 %

Therefore our constraints should read

. .
I6Rl, = INA*SRl, < 8, =4,

L
(6.2) HSqHQ = HPm_]P]GqI

1/2
W8 A/(]-Ivlz) ,

| 8a| <8,

a/(mIP_al, (1-1vt,)1/2)

The image of such an infinitesimal region does indeed contain the ball
Iéplw < 8, and in fact circumscribes it; the question remains: how

much larger is the image than the ball? If 62, 8q, and &a have

bounds Ai. Aq. and ba in the proper norms, then

1+1vl
2,172
"15h|w < A +2m2} 3

Thus bounds based on (6.2) wiil be realistic if and only if 1Ivi, << 1.

2
It turns out that Ivl2 << 1 1if and only if Pm_1q, which has

an m-1-tuple zero a, 1is far from the nearest polynomial Pm_1P]

with an m-tuple zero a. To see this, solve the least squares problem

u

"find u to minimize 'Pm-1q'Pm-1P1U|N" to get

T +.1/2
us= (W'°P )W Ppo1d

e
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S0
_ A . a1 /2¢q _y1/2 1/2 G )
1P @ Pyuly = @B WTE (1= WP Py (WP (P ) WP 4
= v=1
= q*Xq - q*XF](P]*XP], P1*Xq
: = q*Xa(1 - 1v13)
‘ﬁ and
§ fiP~ 8 ~R- P ut?
H 28 m-1 m=-11""W
f fviy = 1 -
¥ 2 P gl
L m']q W
4 Recall from section II.3 that the condition number <y of the
i multiple zero a is inversely related to the distance to the next
i higher manifold. In fact, from the definition of condition number in
i I1.4 we know
: 1.1 y(a)
; Yimhh” m-1""w
! for any y of degree n-m or less. Take y =q -P]u in particular
i to see
j Y > 1/(m|Pm_]q-Pm_]P.'uIN)
!
l% whence
: 2 2 2
3 17(1-0v1,) < mIp jali (1 + vl )y
2 2.2
4 o LI LV
E Thus we have demonstrated the
g Proposition. If the condition number of o is small then the
] image of the infinitesinal region defined by (6.2) is not rurh larger
&
-g then the infinitesimal ball |6p|N < b,
v
'
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Bounds for Changes in Zeros Due to Variation

Over a Region Circumscribing a Ball

When it is inconvenient to bound the changes in the zeros by use

of (6.1) we can resort to (6.2). If the zero a dis well conditioned

and the ball is not too big then we have confidence that the error

bounds we derive are not much larger than necessary.

So suppose that Az’ Aa, and Aq bound &2, 8a, and &q. How

can the zeros of p vary subject to these bounds? Llet o be the

multiple zero and B a simple zero of q. First consider possible

changes due to motion along the manifold. Let & and R denote

corresponding zeros of a polynomial p along the manifold. Trivially
|d-a] <& .
- 0O

To get B it is necessary to construct a Taylor series expansion. B

-

is a simple zero of q; B a simple zero of q+48q. Let
q(1) = (z-B)ag(t) and
x(7) = -6Q(T)/QB(B)

as in (2.5). Then

B-B = x(B) +x(B)x'(B)+---
|8-8] < |x(B)] + |x(B)}|x'(B)] + «-- .

We can use I5qlQ < Aq to obtain bounds for these terms.

For instance,

8q(R) = e;éq

where ea is the functional that evaluates a polynomial at R8. Then
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%
[6q(8)] < lleBlIQlléqllO < negﬂoA
Now

lexl, = le3(R*P, P 1P.) el,

which is a constant that may be evaluated. $g

le *l

lx(B)l < T_B—TB_)%' Aq

and succeeding terms may be calculated in the same way. The bounds

can be calculated with Just a few terms if q (B) is not too small.

Thus we may bound the change in o and g dye to

Movements along the
manifold.

Next to consider are changes due to movements orthogonal to the
manifold. Suppose we are at

B(t) = (1-3)"3(1) ,

and B is a zero of q. Then an orthogonal perturbation is

To see what happens to a,

w"i*ez.

use a formula such as (2.6). First
define

x(1) = -(U'li*éﬂ)(r)lﬁ(r) 5

then for a, a zere of P = p+-u"A*az.

5-3 = (x(a)Vm, (x(@)*™x* (a)/(mx(a)) + ...

Now
x(&) = e The/3(a) |
@) < e R g (s))

If éi are the zeros of q, then 13(a)! = n:a-si;.
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A lower bound may be calculated by using
a-B] > la-By] - & - 28,

where 48, is the bound for |B;-8;1 computed previously.

As for the other term,

ax 7 *y” i s i :
[&*W" A*s2| < Be*W™'A B sl < 1@WTA%E .,

né*w“i*nL . lé*w“i*(Aw“A*)"T\w“él2 .

Since |a|-Aa.§ lal < |a|4-Aa we can compute a bound for |x(&@)| and
for the other terms of |a-d|.
Similarly we can compute a bound for |E-B| for B, one of the
other zeros of §. The process is similar to ttat for |B-8].
Obviously these derivations would be much less tedious if a
suitable algebraic manipulation system were available to do part of
the work.
Sc far it may not be apparent that the process described is much

of an improvement. A simple example in the next section shows that

the payoff can be substantial.
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7.  An Example of Expansions

We will apply both the classical and the New expansion techniques

to an example. It will become evident that the new expansion technique

is very much dependent on a symbolic manipulation system like MACSYMA

or REDUCE [38] for its successful implementation. Even though the

example we provide is somewhat contrived, the amount of algebra
required is substantia].

We will study

« :.‘«L..‘;J.u.a.u.:.‘._‘“k - B

the zeros of polynomials in the neighborhood of the
real cubic

Ble) = - (1e)e? - (148)r 4 (1-5) ,

¥ o

with 6 = 1E-6. Its three simple zeros are

B = - .59999975 8
&] = .99877563 ,
&2 = 1.00122512

(ol il e

i
5]
L]
¢

The last t4o0 of these are somewhat in conditioned, We will use the
| uniform norm in which all weights are 1; then the condition numbers of
; &] and &2 are about 350; the condition number of 8 is about .43.

!
:
if
'
\
E

The results are givern in Tables VII.1 and VII.2.

original polynomial with zeios &]. &2. and 8.

polynomial with a double zero:

P is the

P 1is the nearest

p(1) = (1-a)%(1-8)

where a* 1 and g = .1, Finally B and & represent zeros of an

arbitrary polynomial 3 such that r = p-p with jri <4,

or
F=P-p with IF) <.
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Table VII.1. Expansions to p

Classical Taylor series

From B = -.99999975, , simple zero of p:

B=B - .257(B) + .25F(B)(.25%(8) + . 25%+(8)} + 0(f%) .
Fre. B=-1, a simple zero of p:

B =8 - 4r(8) + 3r(8)dr(8) + e (8)) + 0(r) |

From &1 = ,99877563 or &2 = 1.00122512, simple zeros of p:

G =8 + 2047(8,) + 204?(&1){83282?(&1) +2047" (a,)) + 0(73)
dy = &, - 2007(a) - 2047(8,) (83386 (3,) - 2047 (3,)} + 0(#)

Classical Puiseux fractional power series

From o = 1, a double zero of p:

a=aq+ VL%*(a) + %{%f(a)-r'(a)}

(3r(c)-r'(a))?

+ lq/_?rl (a){.%-r(q) +%r‘ (a) -%,.u(a) 4'.(“)

+ O(rz)

“Expansions" based on the new technique

From B = -1, a simple zero of p:

B=g - ¢q

8= 8+ xg(B) + xg(BIng(8) + 0(ed)
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From a = 1, a double zero of p:
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Table VII.2. Bounds on Zeros

Crude bounds based on classical expansions

| 5-8|
|B-8]

|6,-a,| < 3534 + 5.1E74
1/2

A

838 + 432 + 0(83)
2

I

L4350 + 4307 + 0(A3)

2, 0(A3)

+ .784 + (.604-——'—“—3--—)133/2
ria)l/A

|&d-a] < .93A + O(AZ)

Crude bounds based on the new technique

18-8] < .84 + .382% + 0(n%)
1/2

R M i M

|&-a| < .93A

PR A}

+1.008 + .6683/2 + 0(s2)

Best possible bounds based on classical expansions

A B A

1B-8] < .43a + .0788% + 0(a%)
1B-8| < .43 + .0780% + 0(a3)

- L, .

1&2-&21 < 353 + 5.1E78% + 0(2°)

i 13-a] < .93"2 + 28 + (13+—222 )3/

Best possible bounds based on the new technique

18-8] < .438 + 0(n3)

A

|a-a|

A

.9313”2 +.425 + .0084133/2 + 0(A2)
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Table VII.1 represents expansions to P from p and p. There
is little difference in the expansions for 8, but the difference for
o is remarkable. Starting from the i11 conditioned zeros &, the
Taylor series terms have huge coefficients reflecting short radii of
convergence. In contrast, the fractional power series expansion from
the double zero at o has modest coefficients but exhibits a different
kind of shortcoming: in certain directions the fractional power series
does not exist at all, namely those directions, tangent to the manifold,
such that r(a) = 0. Then the coefficient of the third term becomes
infinite because its denominator contains (r(a))]/z. As we have seen,
in this direction the proper series expansions consist of a trivial
one o = o and a Taylor series in integral powers of r. It is easy
enough to bound changes in that special direction; the severe problem
js that when r{a) is not zero but is small compared to {§rk, the
terms in which r(a)'] appears have huge coefficients.

"Expansions" are also given in the form produced by the new
technique. These expansions are not useful until converted into
bounds, since they are not in terms of a perturbation r but rather
depend on the unknowns & or B, and on x, which is defined below
in terms of an orthogonal perturbation.

Table VII.2 shows bounds for the changes in the zeros based on
the expansions. The table gives both "crude" bounds, which reflect
the simplest approximations that come to mind, and "best possible"
bounds which reflect 2 finer analysis. An automatic symbol manipulator
might produce rathe - . ude bounds while the best possible bounds would

likely be produced by a human analyst.

‘V
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The bounds for § are not of much interest. The bounds for &

reflect the same difficulties as the Taylor or Pdiseux series from

which they were derived. The interesting part of Table VII.2 shows

bounds for small A based on the revised expansion techniques dis-

cussed in the previous section. The important improvement is that the

bound for |a-a| is now independent of the direction of r and all

the coefficients are of modest size. Furthermore the first two teims

are the same &s the best classical bound. The new technique may be

used for bounding until A becomes comparable to |a-8].

Thus this example vindicates the approach advocated in the previous

section. The rest of the current section provides the details of

computing Tab'es VII.1 and VII.2. Those details provide convincino

evidence that practical exploitation of the new expansion technique

requires a sophisticated symbol manipulation system.

The bounds computed by Smith's method [42]) are somewhat larger

than those in Table VII.2. 1In particular, that method indicates

la-a] < 1.3281/2 + 0(a) .

Details of Expansions

We first construct the expansion from p. If we consider a per-

turbation er(t) to (r-&i)ai(r) we find, according to (2.5), that
the perturbed zero

3y = &y +x(E,)e* x(@)x (8,0l -0

where

x(t) = -r()/4,(1) .
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Thus if i =1 then a](r) = (T-&z)(T-&3); a3 = 8. Also
X(G-I) = -Y‘(G.I )/(a]-az)(a.l-a3) »
;(a])(za]-az-a3) F'(a])

x'(a,) = -
(88, (8,-8,))° (81-82)(81-83)
We may represent the polynomial r by the value of r and its deri-
vatives at &] or by its coefficients. Using coefficients,
F(r)=?‘r2+Fr+?’
1 " 2 3 ¢
r(a]) =ray troa s,

r'(a]) = Zr]a] +E, .

Finally let € -+ 1 to obtain a Taylor series in the coefficients of r.

Notice that in the first order term those coefficients appear linearly,
in the second order term they appear quadratically, etc. Substituting

numerical values yields

5= 8- .250(8) + .25R(R).250(B) +.250" (B)} + 0(3) |

Gy = Gy + 2087() + 2047(d;) (832827 (3, ) +2047 (8,)) + 0(F%)
a

’ &2 - 204?(&2) - 204?(&2){83386F(&2) -204?*(&2)} +0(7d) |

The expansions for &] and &2 look unlikely to converge for other
than small r; in fact there is a polynomial p with a double zero
at distance Ifl % 1.7E-6.

We now consider expansions from
_ 2
p(t) = (1-a)%(1-8)

with a =1 and 8 = -1. We will compute the effect of a perturba-

tion r(z) = p(r)-p{z) on a and 8. For B, following (2.5),

213
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define
x(1) = -r(1)/(1-a)?
SO
x' (1) = 2P§T%__ r'(r% .
o (t-a)” (t-a)
en
x(8) = - 2r(8) ,
l‘ and
- x'(8) = - 7r(8) - Ir'(p) ,
SO

B= 8- r(8) + Fr(8)(r(8) + r' () + 0(r) .

o

Heas i o i s
W el e TR s o N s Ko o MBans . o o

Following (2.6) in corresponding fashion for a, define

g x(t) = -r(1)/(z-8)

;, so
| 5! I 'fT‘
% i (t-B) ¥
P and
, x"(1) = r i 2r !T! r'(t ;
! Then (T- e ~
, x(a) = - 3r(a) ,
x'(a) = %f(a) - %r'(a) ,
x(a) = - gr(e) + 3r'(a) - Ir"(a) .
Finally

; fe B RS 'b‘-wﬂ . ‘ﬂ‘- ®

&= v L) + 3ra) - Jrla) + B Toe) x0(a)
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Bounds from Expansion

The changes in zeros may be crudely bounded in a straightforward

way:

b 4

|B-8] < .25r(B)] + 7gIr(B)L|r(B)] + [r'(B)[} + O(rY) .

But |r(B)| 5,“(62 B 1)ledrl < /3 A. Similarly
Ir'(B)] < (28 1 O)MIrl < /5 A. So

|B-8| = .433a + .4308% + 0(a%) .

The bounds for |B-B] and |a-G| are similarly derived. As we have
seen, bounds for |a-a| independent of r do not exist.
We can improve on these bounds by taking a little care. For

instance, the second term in the expansion for B-g8 is
r(B){r(8) +r'(8)}/16 .
Writing r(1) = r1124-r214-r3 we find that term becomes
(ry=rytra)(-ry#ra)/16
Then the question is: how large can
I(r]—r2+r3)(-r]+r3)|/16

be, subject to the constraint Irl2 . lr]|2-+|rz|2+|r3l2 = A2 ? This
problem in non-linear optimization can be solved, for instance with
a Lagrange multiplier, to find that the desired maximum is .0776A2

Similarly the second term in the expansion for a-a is

7r(a) - r' (@) .
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While we could bound the term as
;}(;—Ir(a)l +|r'(a)]) < V30/8 + VBp/4 = 7768

we do better to observe that r(a) = r,+r, +r

] PRRE so we wish to maximize

]
1
1 1 1 1 11

H-15r =grptargl <15 - P vy ||

"3
< (/TT/8)a = .4154 .

Bounds from the New Technique

Now consider how the zeros change when subject to perturbations

of the form discussed in section 6. First, p is perturbed to
B(r) = (r-3)2(x-B)
by movement along the manifold. Then, an orthogonal perturbation
& = e (@)™ @)"2 ... oax 1)

is applied. The total perturbation should be commensurate with 2
which to simplify matters will be taken to be no larger than 10'4.
Corresponding to the bound Irl < A for the conventional expan-

sion we have (6.1):

) 2 X |, [ 82
I sa|[¥ = | 60| W] eal <&
Sa H Sa Sa

2
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To compute the components of H, note

1

AW "A* = a*ea =3,
1 0
P [ L A
0 -1
2 -l
X=P %P . = ,
m“] “] “] 2
[
P, = ,
1 L"]
r] A
q-= N
ey
]
Xq = 5
s
P1Xq =0,
q*Xq = 2 ,
P-l*XP.|=6.
S0 300
H={0 6 0
0 0 8

We will compute the best possible bounds from H, but for the crude

bounds we will use (6.2). Then v =0 so (6.2) becomes

l6x] < (V3/3)s ,
|5ql = [88] < (/B/6)a ,
and |6 < (¥2/4)a .

In the usual case when deg q > 1, $8 is a Taylor series in cq.

The variation in the double zero 3 and the simple zero 2 is

thus easily bounded for movements along the manifold. Now we turn to

i
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the effect of the orthogonal movement in the direction &X&. The

effect on 8 may again be deduced from (2.5); let

o L@
(r-3)2

P 3
——
~
~—
"

(1) = @@ 54 (n-3) (@) "I,
(1-d) (T-&)Z
Then

x(B) = -1 (J(a*B)"3/(8-3)2)
and

o (3) = o @L@E @ n-5) @It

I

.

Since |o-a| <& and |B-B| <& and & < 10°*, in the bounds that

follow no harm is done by substituting o for & and B for &,

since the resulting coefficients will only be given to 3 figures. For

.‘: P

larger A more care must be taken. In particular, if the perturbation

along the manifold is extended far enough to reach the next higher
manifold, where & = B,

—
-

e

the bounds below will be utterly wrong.
To get a crude bound, we would use

- L ———

“ .

() < Lo (LBl 5a1?) = Bo < F

Sl IR = A T

MOEICIEFEArS
Then
18-8] < [x(B)] + |x(B)||x"(B)| + -+~

< (/3/8)a + 3/81.‘\2 + een
Since

|8-8] = |¢8] < (/B/6)a ,

we get
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x /3, /By, 4 3,2
|g-8| < (F+gbrgs v

< e+ 37507+ o(s’) .

For a more refined bound, just be more careful:

Ao

=l

x(B)

x'(B) = 0 (+ higher order terms) .

= and 8 = 8, and has higher order

x'(B) is exactly O when &

x(B) also has second order terms which we have not

terms otherwise.

bothered to extract.

X .p=p-B+B- = -8q+ x(B) + x(B)x' (B) + -

- 8q - %Gk + 0+

A best possible bound for \-5q-%ex\ may be obtained from the condi-

tion Bshl, < b
) 8
] ]
i \(-— -1 0) éql <f-z-10 6q
3 . ‘ 3 lu‘ ra lH

i
cAl-L 1 o 1| asnby <
0

b.

k)

is slightly more compli-

The corresponding computation for a

cated:

P R RN S g -

2y = - En" I/ B

() = :::7(5*T)n-j _5*5(ﬂ-j)(5*1)n-j-]\
e (t-§)2 (-8) o
-:(3’)27("'5)(“‘3‘\)(i*f)n'j'z _2}*"(n-j)(5*r)n-j'] ,27(5*7)“‘5\
(T'B) (T'é)z ('-é)3 A

T T . PR MR
x—
0
g
"
(D]
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Substituting we find

x(3) = - (71a" 7%/ E-8)

5 = en(Lla" 2 @7 (n-g) |53 2
SA{ =y §)2 (5-5) b,
x"(5) = enil8 *)2] (n-) (n-j- -1)[a""3-2)2 _25*) (n- J)]""'J 2
(G-8) (-8)°
N=j,;2
" 2§Ian Jl } .
(a-B)
Then to get a crude bound,
(@] = 3er < (B,
(@) < [alG+3) < aa
@) < 18] (1+3+3) < (B3,
Since
d-a = Sa + h)+-wrr7h" )+—_TTL4+ AEE
a
then

ol <P G HEGA 9m 2

or

la-al < .9318'2 + 1,003 + .66303/2 + o(s2) .
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To get the corresponding best possible bounds, note that

x(@ = - 360 ,
=y < 3
x'(8) = - 781 ,
x"(8) = 262

Then for the second term 6a+J2-x'(&) we have
3 3 AT
IGOL--g-G)\I < ||(--8-0 'l)ﬂHu = —g—A

For the third term,

|"(‘$ "(a)+ l = —Fl -%HMP/Z: .ongar¥/2

221




.ﬁx: Aa:.‘.‘lLH-;h o M

A oA e

o iR sall . % e

7
-,

T iy - AP PP MRRIIREITC) Y TV @ i

CHAPTER VIII
EXPERIMENTAL METHODS

1. Introduction

In the next chapter experimental results will be given which
vindicate the theory of previous chapters. After that we will pre-
sent experimental results for a class of polynomials more difficult
to understand.

In the present chapter we describe how the nearest polynomials
with given multiplicity configurations were found. Then we explain
the tests made to assure the validitv of the results. Finally we show
how to contrive test problems with known answers,

Experiments were carried out on the CDC 6400 at the University of
California, Berkeley. Coding was in the FORTRAN language for the
University of Washington RUN compiler. Although most of the codes
usually perform satisfactorily in the stated environment they are not

presently in a portable form that would work reliably in other envi-

ronments. Consequently a detailed discussion and 1isting of these

codes is not included here.

222
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2.  How the Equations were Solved

Chapters III-V presented various equations to be solved for
soiutions ¢ corresponding to nearest polynomials with one or more
multiple zeros. Expressions were usually obtained both for a function
and its partial derivatives so that Newton's method could be applied.
To use any iterative method, however, starting guesses must be
supplied.

Usually the sta:ting point was taken to be a zero of the appro-
priate derivative. Thus, if the nearest polynomial with a double zero
was sought, a starting point would be chosen from among the zeros of
the first derivative. One might try to use the zeros of the original
pc.ynomial, but the zeros of the derivative seemed more often to lead
to faster convergence.

In order to maximize the probability of first finding the globally
nearest polynomial with the desired multiplicity configuration, the
starting points were tried in a definite order. That order was fixed
by computing the distance to the nearest polynomial with that start-
ing point as a double zero. That distance is an upper bound for the
distance to the mani’old from that starting point. The starting points
with the least upper bounds were used first.

The same criterion for choosing among starting points could be
used if the starting points were the zeros of the original polynomial.
In this case, however, it would be equally appropriate to rank the
starting points according to their condition numbers.

Once a starting point was chosen, liewton's method was used in all
but one instance. That case exploited the fact that the equation for

the nearest polynomial with a double 2ero alsays has a real solution
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between two real zeros of a real polynomial. Those two real zeros may
be used as starting points for a secant-like iteration for ¢; among
many such iterations Brent's [2] is a well known recent one. Brent's
method was used to quickly locate real solutions whenever appropriate.

In order to terminate the iteration an error bound on the func-
tion evaluation was computed. When the function whose zero was sought
was reduced below its error bound, the rucrent iterate was accepted as
a zero. These error bounds were usually computed with the aid of
interval arithmetic [24). The lack of suitable facilities for inter-
val arithmetic in CDC hardware and software made it necessary to code
interval operations as subroutine calls -- making the codes for the
functions virtually unreadable, and thereby providing another reason
for not publishing those codes here.

If no solution was fourd after a fixed number of iterations
(usually 40) the iteration was terminated and another starting point
tried. If a solution was found it was added to the list of known
solutions used to deflate the function, as described in one of the
appendices.

When all the reasonable starting points had been tried the

accumulated solutions were checked for correctness and the correspond-

ing perturbations analyzed.
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3. How Do We Know the Answers are Correct?

The methods just described produce cne or more solutions ¢z
corresponding to locally nearest polynomials with a given multiplicity
configuration. The next step is to compute each polynomial from its
r and check that it is indeed an appropriate solution. Because no
similar computations suitable for comparison have been published,
extra care was necessary to be sure that the numerical results were
reliable.

It must be understood from the outset that in general we can not
be sure of having obtained the global minimum. With no theoretical
information on the size of the second derivative or on the number of
local minima that may exist in a region the best that can be done is
to obtain as many local minima as possible and examine each. Empiri-
cally we have never found more than n+2 local minima while search-

ing for the nearest polynomial with a single multiple zero, so that

task is not quite hopeless. Furthermore, whenever one might reasonably

expect from the nature of a problem that one minimum would clearly be
much better than the rest, that minimum has always been found approxi-
mately as expected. An example of such a problem is one in which a
perturbation is applied to 2 polynomial having one multiple zero and
several simple zeros, all well conditioned in the sense of chapter II.
Thus the perturbed polynomial has simple zeros near the simple zeros
of the unperturbed polynomial, but the multiple zero has divided into
several very i1l conditioned zeros. When the computer codes are asked
to find the polynomial with an appropriately multiple zero nearest
th=t perturbed polynomial, they have so far always found a locally

closest polynomial with a multiple zero near the multiple zero of the
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original unperturbed polynomial. In the circumstances described,
moreover, none of the other local minima are competitive in distance.
Thus it seems highly likely that the best local minimum is really the
global minimum.

There is the additional complication that our results are for
real polynomials and, as we have seen in chapters III and V, it s
sometimes necessary to solve an extra set of equations for higher
multiplicity in order to find the global minimum. In our experiencc
with double zeros, only once has a better minimum been found by solv-
ing the equation for a triple zero. Thus our overall results are
probably not seriously compromised by failing to check for quadruple
zeros when searching for triples, or for various higher configurat’ons
when searching for two or more doubles.

The reader may wonder why it is so easy to find the z's when
the starting points are near i1l conditioned zeros of a polynomial.
After all, i11 conditioned zeros themselves are almost by.definitinn
difficult to find.

The explanation lies in the form in which polynomials are pre-
sented to our codes, namely as a list of their zeros. If the polyno-
mials were represented by their coefficients, as they are represented

to a subroutine to find zeros of polynomials, then the solutions ¢

to the equations we wish to solve would also be i11 conditioned func-

tions of the input data. But since i1l conditioned zeros are normz1ly

recognizable as a problem requiring amelioration only when those zeros
are in hand, the sensible form for representing that i11 conditioned

polynomial is by its zeros rather than its coefficients. In that form

226
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the polynomial may always be evaluated wizh low relative error, even

near its zeros.
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4. Computed Checks on Results

Once a ; has been found, we can compute the perturbing polyno-
mial q(r) by an equation such as (III.6.4). Then p(t)+q(z) should
be locally nearest to p(t) and should have a multiple zero ¢ of
the intended multiplicity m, or several z's of appropriate multipli-
cities if that was what was requested.

Analytical errors, approximation errors, coding errors, and
rounding errors could all cause the results to be other than expected,
so each assertion about p+q 1is checked in the codes.

Note that p+q 1is never represented by computing the coeffi-
cients of p+q. Since the coefficients of q are usually intended
to be small perturbations of the coefficients of p, adding them
together would entail severe loss of significance. Therefore to

evaluate (p+q){n) at a specific n, compute

n
p(n) = N (n-ai)
i=]

and

n
-
a(n) = § g.n"
121 i

and then add p(n) and q(n).

Using this evaluation scheme our first task is to check the asser-

tion that z is an m-tuple 2ero of p+q, i.e.
p(k)(c)+q(k)(c) =0, k=0,...,m1,

We do not expect that equation to be satisfied exactly on a finite

precision computer so we compute error bounds by interval arithmetic

228
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and ask only that

be within its errorbound. That proves that p+q satisfies the con-
straint of lying on the manifold of polynomials with m-tuple zeros.

The next assertion to be checked is that p+q represents a
stationary point on the manifold with respect to Hlql. The analysis
of chapter III shows that this is the case if either the last Lagrange
multiplier vanishes or the multiplicity of ¢ in p+q is at least
or2 greater than requested. For our codes the last Lagrange multiplier
is usually forced to be zero in the solution process for ¢ and q.
If we wish to examine other stationary points which, as we have shown,
can not be minimal with respect to complex perturbations, we check
that one of the stationarity conditions is satisfied.

After checking stationarity we turn to minimality of Iqi.
Minimality may be checked by examining the Hessian matrix of second
derivatives of Iqlz. Given any fixed 7, there is a unique q
closest to p such that p+q has an m-tuple zero 7. Thus Iql
could be regarded as a real function of two real variables, Re ¢ and
Im z, for which partial derivatives can be computed to provide a 2 by 2
Hessian matrix. Alternatively the method of section I111.10 could be
used to compute a Hessian matrix for the coefficients of q and the
z's which are now regarded as independent except for constraints. To
simp1ify computation only real changes in q and Z were considered
in computing the constrained llessian of dimension n+1-m.

Using either Hessian, minimality could be checked by computing

the signature. Actually the complete set of eigenvalues was computed
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to ascertain the shape of the minimum. Minimality corresponds to all

eigenvalues positive; maximality to all necative; other configurations
correspond to saddle points.
After the checks 1isted above, the other zeros of p(t)+q(t)

were computed, assuming that the m-tuple zero Z was known. Then the

n zeros were used to reconstitute the coefficients of a polynomial
whose coefficients should be close to those of p(t)+q(r). The
explicit coefficients of p+q were computed for use in this check
only. The maximum relative difference was noted and flagged if larger
than roundoff error level. If no flag was noted then the zeros of
p+q were assumed to be reliably computed and their condition numbers
were calculated. Of special interest was the condition number of the
multiple zero g which should have been much smaller than the condi-

tion numbers of the i11 conditioned zeros it replaced.

When computing q and Hql in cases where we expect the last
Lagrange multiplier to be zero, we usually forced it to be zero while
solving the 1inear equations for q. We could, however, solve a

system of linear equations of dimension one larger, Then, because of

rounding error, we expect the last Lagrange multipiier to be small but

not zero. So as a check we re-computed q and lIql using the non-

zero multiplier. The two values of Iql are compared and flagged if

they differ by more than a few units in the last place of precision,
Finally a number of random small perturbations of 7 were made

and the distance to the nearest polynomial with the perturbed 7 as a

multiple zero was computed. Since the original ¢ was alleged to be

a minimal point, a message was printed if any of the nearby polynomials

were significantly closer to p.
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A11 the experimental results to be presented in this chapter and
the next satisfied these checks unless otherwise stated. Thus there
is a basis for confidence that the various complicated eauations that

were solved for one or more z's were in fact formulated and solved

correctly.
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5. Setting Up a Problem with a Known Solution

While developing computer codes it is sometimes desirable to
solve a problem whose answer is known. Although it is not known how,
for instance, to set up a polynomial such that the globally nearest
polynomial with an m-tuple zero has the m-tuple zero we specified in
advance, it is a simple matter to set up such a polynomial so that a
locally nearest polynomial has that specified m-tuple zero.

One's first thought might be to start with a trivial problem whose
solution is known and apply a random perturbation. This is done for
some problems described in the next chapter. For instance, a small
random perturbation may be applied to the coefficients of a polynomial
with a double zero to obtain a nearby polynomial with two i11 condi-
tioned zeros. Then the computer codes find that the nearest polynomial
with a double zero has a double zero near the one we started with.
Figure VIII.1 shows why the double zero is not the same; a perturba-
tion in a random direction is not generally "orthogonal" to the sur-
face. The change in the multiple zero is usually commensurate with
the size of the perturbation when the multiple zero is well conditioned.

It is possible to set up a perturbation so we return to a speci-
fic multiple zero, however. Recall the equation, (111.6.2), to be

sclved for the polynomial nearest p with an m-tuple zero ¢:
f(z,p) = det(Ap | AW 'A*Z) = 0 .

Z is a constant truncator matrix, W depends only on the norm, and
A and A depend cnly on ¢C.
Normally p 1is given and we seek by solving a highly non-

linear equation. But now we wish to find p given . From the
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Figure VIII.1. p has a multiple zero.

A random perturbation

to p produces p. p+q is the polynomial with
a multiple zero closest to p.
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properties of determinants it is apparent that f(z,p) 1is a linear

functional of the vector p, so f(z,p) = uc*p for some u_* which

g
depends on ¢z but not p. Then to find such a p it is only neces-

sary to obtain one of the members of the (n-1) dimensional subspace

of solutions of uc*p = 0.

As an example, suppose we wish to start with a polynomial p
with a double zero at a, so f(a,p) = 0. We then want to find a 4§
such that p+q has a locally nearest polynomial with a double zero

at a. Presumably that nearest polynomial would be p

if q is not
too large.

We find then that f(a,q) = 0 is the requirement on g. We can

find such a q by letting 60 be a polynomial with random coeffi-

cients and 6] be the constant polynomial whose value is 1. Then

S f(a’ao) -
q= qo = fza’a1) q1|

is the polynomial we seek. It may be verified that f(a,a]) #0 for
m=2or 3.

Then we may apply the computer codes to p+q to verify that
they do find a locally nearest polynomial with an m-tuple zero «.

We could impose an even more stringent requirement: that the

closest polynomial to p+q with a multiple zero be p itself. This

is just as easy to arrange., Recall the notation from chapter III for

finding the polynomial p+q with a multiple zero { nearest a poly-

nomial p. For our present purpose p = p+q and p+q=p so

q = -q. But

q = WA
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for some m-1 dimensional vector & of Lagrange multipliers. So our

recipe is: choose any random m-1 dimensional vector { and let

s

P+ = p-U A%l

be the perturbed polynomial. Then we may verify that the equation

for T,
det(Ap | AW A*Z) = 0 ,

is trivially solved when 7 = a, for then

Rp = - AW VA%
- A A

)

The matrix whose determinant we seek is just

where

[ =4
"
<>

T .

1

AW A*(u | Z)

and the bottom row of the rightmost factor vanishes as does the

TS

S NPT ¢ N A e

determinant.

When solving for Lagrange multipliers i,

A TA*E = -Ap = AW TA%D |

1

and since the rows of AW 'A* are linearly independent, 2 = U as we

hoped, and q = -q. Thus

CIERR )




is indeed the subspac: of perturbations of p for which p

Tocally nearest polynomial with an m-tuple zero.

is

a
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CHAPTER IX
NONPATHOLOGICAL EXPERIMENTAL RESULTS

1. Introduction

We turn now to presentation of some results of calculations per-

formed on specific polynomials. The results in this chapter generally

tend to vindicate the theory.

Calculations were usually based on the methcds described in the
previous chapter. The norms used were weighted least squares norms
intended to minimize relative changes in the coefficients of the

starting polynomial. Thus if the monic starting polynomial of

degree n were

n n
plr) = M (1-a;) = 1"+ p.-r'""j
o1 1 ad

then polynomials

n
qlt) = } qjt"'j
J=1

would be sought such that p+a had the desired multiplicity struc-
ture and

2. A 2
1915 = q
q W jZ]wjl jl

was mininized. Usually wj = lllpjlz but sometines w, = 1/|aj|2
was used instead, where

n
B(x) = M (r-lagl) .
=]
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The Tatter norm is applicable when some of the pj‘s vanish.

The choice of norm also affects the condition numbers. Generally
condition numbers for relative changes in the zeros are used,

In the first cases the "right answer" is obvious and the codes do

indeed recover that answer.
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2. n-tuple Zeros

Equations for finding the nearest polynomial with an n-tuple zero
are given in section II1.2. The present example was created by ran-
domly perturbing a polynomial whose quintuple zero 1 has condition’
number .135. A perturbation of norm .749E-12 was applied in a

random direction to create p whose zeros are

+

.99557908 + .32081885E-2 i

+

1.00168511 + .52020041E-2 i
1.00547160 .

The condition numbers of these zeros vary from .353E+10 to
.357E+10. The equations for finding the nearest polynomial with an
n-tuple zero were solved by Newton's method, starting from the arith-
metic mean of the five zeros of p(t). The result was that the
nearest polynomial with an n-tuple zero had the n-tuple zero
1.000000000000007 with condition number .135.

Corresponding results were obtained for similar polynomials of
degrees 8 and 20. Although the ri-tuple zero is easy to find, the
nearest polynomial with a real double or triple zero is sometimes
difficult to locate, especially if n 1is odd. There are usually
numerous nearby polynomials with a complex double zero, and for some
of these may be found a nearby real polynomial with a complex conju-

gate pair of double zeros.




3. Returning to a Double Zero

The next polynomial has six zeros -2, -1, 1, 1, 2, and 3. The
worst conditioned of these is 3, with condition number 43.4. The
double zero at 1 has condition number 5.04,

A random perturbation of norm .438E-8 was applied, creating a

polynomial p:

Zero Condition number
-2.00000000 2.89
-1.00000000 2.9

.99999998 + .10462513E-3 1 .557E+5
2.00000011 19.5
2.99999992 43.4

The methods of chapter III were applied to find the nearest poly-
nomial witt a double zero, and a polynomial p+q was soon found
whose doul 'e zero at .99999998 has condition number 5.04. lql = .94E-9
and the other zeros were not changed by more than .0000007.

Other locally minimal polynomials with double zeros were also
found. For instance the next closest one has a double zero at 2.5397
with condition number 3.85, and the worst conditioned zeros of p+q
are .952 ¢+ .158i, with condition numbers 28.6. But 1H§ql = .385E-2,
so this perturbation is over a million times larger than the previous
one. By taking such a large step we manage to decrease the worst con-
dition number only by a factor of 2, and this perturbation seems much
less natural than the previous one.

Similarly when we seek the nearest polynomial with a triple zero,

we find we nust let 1lIqb = .017 1in order to reach the polynomial with

eqv




a triple zero at 1.20. The worst conditioned zero of that polynomial
has condition number 8.64.

Thus we find that by forcing a large enough perturbation on p
we can make its zeros as well conditioned as we want. However in this
case we find that there is an "obvious" perturbation in which a com-
paratively small change in p results in a comparatively large improve-

ment in the worst condition of p's zeros.
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4. Returning to a Triple Zero

We start with the polynomial with simple zeros -2, -1, and 3, and
triple zero 1. The condition of the triple zero is .797 and the worst
zero is 3, with condition number 5,52,

Apply a random perturbation of norm .839E-10 to find p, a poly-

nomial whose zeros and condition numbers are

-2.00000000 1 521
-1.00000000 .615
.99980426 + ,33876727E-3 i .357E+7
1.00039148 .357E+7
2.99999999 5.52

When we search for nearby polynomials with double zeros, we find
for instance one with a double zero .99999525 at distance .365E-10.
The condition of that double zero'is somewhat improved to .714E+5 but
the condition of the third zero near 1 becomes .807E+10. Even though
we can reach a double zero in a small step, the results are not
interesting.

When we search for a nearby triple zero, however, we find that a
perturbation of norm .495E-10 gets us to a polynomial with a triple
zero 1.000000000014 with condition number .797, The worst zero has
condition number 5.52. Comparing to the perturbation to a double
zero, we find that a not much larger perturbation to a higher multi-
plicity structure yields 'a substantial improvement in condition.

Computer codes for quadruple zeros are not available but it seems

doubtful that this p could be perturbed to a quadruple zero by a

further small perturbation.
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5, Returning to Two Double Zeros

The polynomial with simple zeros -2, 0, and 2, and double zerps
]

rturbation of norm .332E-7 to
Produce a polynomial whose i11 conditioned zeros were
+ .9999999997 + .562407E-4 i with condition numbers ,196f+4,

A polynomial at distance .143f-7 had a double Zero but two
remaining i11 conditioned zerps. There was a polynomial with a triple

Zéro at distance .629 with all zeros well conditioned, Byt the satis-
factory polynomial had two double zeros at #

. 999999997 A1l zeros
were well conditioned but the perturbation q was only .2
norm.

19E-7 in
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6. Returning to a Complex Conjugate Pair of Double Zeros

Consider the eighth degree polynomial whose simple zeros are -3,

-2, -1, and 4, and which also has double zeros at 2+i. The worst
zero is 4, with condition number 55,0; the condition of the complex
zeros is 7.98.

A random perturbation of norm .168E-8 produces a polynomial p

whose zeros and condition numbers are

-3.00000000 9.98
-2.00000000 14.9

- .99999999 6.12
1.99982354 + 1.00012355 i . 126E+6
2.00017652 + .99987637 i .126E+46
3.99999984 55.0

When we apply the methods of chapter IV we discover that there is
a real polynomial p+q with double zeros at 2.000000012 + .9999999946 i
with condition numbers 7.98. [lgql is .459E-9 and the worst zero is

3.9999993 with condition number 55.0.

Thus in the case of a complex conjugate double zero we can also

" .

find the answer when it is obvious. In this case no real double or
triple zeros were found closer than .001. Of course there is no theo-

retical basis for asserting that they do not exist -- but if they are,

o7, LIPS T il TG & gt

they must be rather well hidden!
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7. A Polynomial with Several Pairs of Complex Conjugate Zeros

Wilkinson presents a real polynomial [34, p. 63] all of whose 16
zeros are complex, most being rather i11 conditioned. Condition num-
bers range from .878 to .107E+11,

No real ¢'s were found other than 0, but 7 complex <¢'s corres-
ponding to complex perturbations were found. A1l of these complex ¢'s
lead to nearby real polynomials with complex conjugate pairs of double
zeros. The closest of these is at a distance of .247E-13 and the
worst conditioned zero of the perturbed polynomial has a cpndition
number of .551E+10. So from the point of view of "explanation,"
clearly some higher multiplicity configuration is required. The value
of this example is rather that it shows that the codes are capable of
finding a number of complex conjugate pairs of double zeros when the
problem is of a nature that several such soluticns might reasonably
be expected.

In the table below we 1ist the unperturbed zeros a and their
condition numbers on the left and, on the right, Ilqi, g, the condi-

tion of ¢, and the worst condition number of the perturbed polynomial.

Real Imag Cond(a) Iql g Cond(g)  worst

-.305E-5 .312 .565E+10 .247E-13
-.148E-4 .312 .107E+N .545E-13
-.471E-4 .311 .646E+10 .329E-12
-.143E-3 .309 .154E+10 .644E-1
-.491E-3 .304 .127E+9 .656E-9

-.232E-2 .293 .233E+7 J1E-5 .166E-1 .260 .381E+3 .710E+4
-.187E-1 .253 .297E+4 .134E-1 JA21 .162 .483 . 222E+2
-.132 .136 .878 L181E+] 0 0 .036 .227E+2

.8B4E-5 .312 .110E+8 .551E+10
.354E-4 311 .199E+8 .277E+10
.116E-3 .3N9 .108E+8 .137E+10
J417E-3  .306 .196E+7 .168E+9
.201E-2 .295 .B52E+5 .382E+7

[ Zha £54
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8. An Uninteresting Polynomial

In contrast to the previous examples, we consider now a polynomial
all of whose zeros are well conditioned, just to see how the manifold

of double zeros appears from a distance.

let p be a cubic polynomial with zeros 1, 2, and 3, and condi-

tion numbers .87, 4.6, and 4.8. For this example we use the uniform

norm for which all weights are 1. After a lengthy search we find the

following interesting points:

z fql Worst condition
Double at 2.49244540 .0551 .72

Double at 1.32286845 .152 2.7

Double at 0.0 12.58 1.0

Double at -3.20829919 12.57 .15

Double at -1.13700604 13.93 10.4

Triple at 1.87492441 57.18 .99E-2

0f these points, 0.0 turned out not to be a stationary point, and
-1.13... turned out to be a maximum on the real axis, and a saddle
point in the complex plane. The point 1.87... represents a minimum
among perturbations to a real zero but a maximum among real perturba-
tions to a double zero. The other three points are local minima in
the complex plane.

This example supports the conclusion in chapter 1I that absence

of i11 condition implies distance from the manifolds of polynomials

with multiple zeros.
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9. Zeros in a Circle

The next example is a polynomial mentioned by Wilkinson {34].

Its zeros 1lie around the unit circle and are the twenty ZOth roots of

unity. In the uniform norm the zeros are all very well conditioned;

the real zeros have condition numbers .224 and the complex zeros have

slightly smaller condition numbers, since only real perturbations are

considered. OQur codes were unable to find any solutions for double

zeros other than zero or for complex conjugate pairs except by great

labor, which produced unsatisfactory results. It turns out that

p(T) ETn"B y

B real and positive, has non-zero solutions ¢ constrained as follows

for double zeros:

8/n < |z|™ < (n-1)8 ,

T Tenes 1 e e A

arg ¢ = (2k+1)n/n, k = 0,1,...,n-1 .

g e

Thus arg(c") =7 and if n 1is even there are no recal solutions <.

o
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10. Summar

The results presented in this chapter and other similar results
lead to the following conclusions:

1.  When there is an "obvious" nearby polynomial of a certain
multiplicity structure, the computer codes find it. If insufficient
multiplicity is requested, the codes find a polynomial that is close
but has some zeros still very i1l conditioned. When too much multi-
plicity is requested, the codes find a polynomial that is relatively
far away although all its zeros are well conditioned. When the proper
multiplicity is specified, the codes find a polynomial which is rela-
tively close and has all zeros well conditioned.

2. When there is no obvious reason why a nearby polynomial would
have substantially better conditioned zeros, the codes do not find any
such polynomials.

3. The polynomials that the codes find are indeed critical
points for #ql and are usually minima. In other words, the answers
are correct, but the codes may not be able to find all the answers.

With conclusions like these, based on simple cases, we have Ssome
basis for confidence in examining a more difficult polynomial in the

next chapter.
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CHAPTER X
WHAT'S WRONG WITH WILKINSON'S POLYNOMIAL?

1. Wilkinson's Polynomial

In [34] J. Wilkinson describes the astonishing i11 condition of a
polynomial whose zeros are the integers fror ! through 20. He observed
that by changing one of the coefficiients by less than one part in
1.0E+15 it was possible to create a polync. .ial some of whose zeros
were complex ccnjugate pairs.

Our results in chapter Il lead us to conclude that this badly
behaved polynomial must be near the manifold of polynomials with double
zeros, at ieast, and perhaps near manifolds cc responding to hfgher
multiplicity configurations as well. Since chis polynomial is pre-
cisely defined, we are not interested in ":meliorating" its i1l condi-
tion but rather "explaining" that i11 concition if possible. The
results mentioned in the previous chapter show that i11 condition is
ideally explained by displaying a small pertu-bation to a nearby mani-
fold of polynomials with some appronrizte mu1tip1ic1ty configuration.
We shall see that the experimental results presently available do not
support any such simple explanation for Wilkinson's palynomial; rzther
they suggest that it is near a place where the manifolds of polynomials
with wultiple zeros are especially contorted.

After examining the well known Wilkinson polynomial we will look
briefly at its translation to the origin and at another Wilkinson poly-

nomial which is in some ways the opposite of the first,
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2. Coefficients and Condition Numbers for Wilkinson's Polynomial

Two unusual things about Wilkinson's polynomial are the ranges in
magnitude among the coefficients and among the condition numbe:~s of
the zeros.

The zeros are the integers from 1 through 20. Therefore the
coefficients are exactly computable, but as a practical matter most
have so many significant figures that they must be rounded to fit in
48 bits of a CDC computer word. Consequently the polynomial should be
considered to be defined by its zeros, and the coefficients are only

used to compute the weights in the norm on perturbations:

n n
p(t) = T (t-i) ="+ J p,a"d
i=1 j=1 9
2. 2
Iql® =} wJ|qJI
_ 2
W 1/lpj|

This "relative" norm measures relative changes in the coefficients of
p; we will also present results for the "uniform" norm in which all
the weights are 1 and which measures absolute changes in the coeffi-
cients of p.

Some differences between these norms might be expected due to the
large variation in those coefficients. In magnitude they range from
210 to 1E19; they are listed in Table X.2. Thus the corresponding
weights for the relative norm range from 1E4 to 1E38.

The zeros are given in Table X.1 with their condition numbers.
The first condition number is with respect to the uniform norm on the
polynomial. The second condition number is with respect to the rela-

tive norm on the polynomiai. A1l condition numbers are for absolute
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Table X.1

Zeros of Wilkinson's Polynomial and Their Condition Numbers

Zero Uniform Norm Relative Norm
1 . 368E-16 .187E+3
2 .946E-10 . 355E+5
3 .173E-5 .234E+7
4 .226E-2 .778E+8
5 .620 .153E+10
6 .591E+2 -T198E+11
7 .257E+4 JA77E412
8 .602E+5 -115E+13
9 .B45E+6 .553E+13

10 .763E+7 .203E+14
1 .466E+8 .572E+14
12 .199E+9 . 125E+15
13 .607E+9 .212E+15
14 .134E+10 .278E+15
15 .212E+10 .279E+15
16 .241E+10 .c10E415
17 .191E+10 .114E+15
18 .997E+9 .428E+14
19 . 309E+9 .979E+13
20 .432E+8 . 103E+13
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changes in the zeros. The condition number for relative changes in «a,
say, may be obtained by dividing the listed condition number by |al.

The most striking facts about the condition numbers are

1)  the magnitude of the i11 condition of the worst,

2) the large group of zeros that are nearly as badly condi-
tioned as the worst, and

3) the Hack of any obvious partitioning into a set of well con-
djtioned zeros and a set of i11 conditioned ones,

The last fact distinguishes this polynomial from those of the
previous chapter. There is no obviously best multiplicity configura-
tion that we should look for. So we will try as many as we can,
starting from the simplest.

Befoie giving the results, it is instructive to attempt to graph
this polynomial. It turns out to be impossible to perceive all its
features on one graph, so we present several successive magnifications
of interesting parts. Figures X.1-X.4 were produced on a Tektronix 4051
Graphics System.

It is interesting to note that the symmetry of the polynomial
about 10.5 is not reflected in the condition numbers, which reach their
maximum near 15, depending on the norm. That is because the formula
in chapter II for the condition number of a zero o has a numerator
which is a monotonic increasing function of |a; and a denominator
that depends only on the absolute spacing between o and the other
zeros. The numerator is a rather rapidly increasing function of |al;

for a simple zero, it is

Ilazin'j/wj :
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Intuitively it is hard to understand why the larger zeros should
be so much more i11 conditioned than the smaller ones. Indeed, by
translating the entire polynomial by -10.5 so that it is symmetric
about the origin, one can eliminate that part of the anomaly. Wilkinson
did so and found substantial overall improvement in the condition of
the zeros. Of course, if that translation were regarded as a pertur-
bation, its norm would exceed 1 in the relative norm and 1E19 in the
uniform norm, and we know that remarkable improvements in condition
often accompany large perturbations.

We wish, however, to study Wilkinson's polynomial as an untrans-
lated object. The next section gives our results. Some results for

the translated polynomial are in a later section.
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3.8E+18
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2.0E+18 ¢}

1.BE+18

-1 .BE+18 ¢ |
% 10 20 30

Figure X.1. Wilkinson's polynomial on [0,21).
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S.BE+15
8
-5.BE+15 ¢}
-1 .BE+16
-1 .5E+16 ¢
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Figure X.2 Wilkinson's polynomial on [1,20].
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Figure X.3. Wilkinson's polynomial on [3,18],
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,g Figure X.4. Wilkinson's polynomial on [6,15].
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3. The Nearest Polynomial with a Double Zero

There are many polynomials with a double zero that are close to

Wilkinson's polynomial.

In the present section we will just present the facts about the

ciosest known such polynomials in each norm.

In the relative norm the nearest polynomial on the manifold has

a double zero at 14.499... . The distance lql is .11054E-14. The

double zero and some of the nearby simple zeros are listed along with

their condition numbers and their condition numbers prior to pertur-

bation:

Unperturbed zero and condition Perturbed zero and condition

12 J25E+15 12.15289  .174E+15
13 .212E+15 12.77240  .225E+15
14 .278E+15 14.49963  .963E+13
15 alT9EHNS 14.49963  ,963E+13
16 .210E415 16.22347  .215EH15
17 J114E415 16.85795  .159E+15

The coefficients of g are in Table X.2.

The corresponding distance in the uniform norm is .13481E-9.

Unperturbed zero and condition Perturbed zero and condition

13 .607E+9 13.09030  .753E+9
14 .134E+10 13.83087  .123E+10
15 L212E+10 15.48653  .325E+7
16 .281E+10 15.48653  .325E+7
17 .191E+10 17.25351  .205E+10
18 .997E+9 17.83934  .152E+10

In the next section we will list some of them.
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In both cases we find that moving to the manifold of double zeros
improved the condition of the coalescing zeros appreciably, and thereby
improved the overall condition of the polynomial. But some of the
nearby zeros actua]]y'worsened slightly in condition. Evidently

moving to an even higher manifold is in order,

i
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Table X.2

Coefficients of Wilkinson's Polynomial and of the Perturbations
to the Nearest Polvnomial with a Double Zero

j pj qj, uniform norm ?j’ relative norm
1 =210 .13452E-9 -.29637E-15
2 20615 .86866E-11 -.19697E-12
3 .. -1256850 .56091E-12 -.50496E-10
4  .53327 96400 E+8 .36219E-13 -.62696E-8
5 -.16722 80820 E+10 .23388E-14 -.42520E-6
6 A0171 77163 E+11 .15102E-15 -.16922E-4
7 -.75611 11845 E+12 .97516E-17 -.41346E-3
8 1310 27700 E+14 .62969E-18 -.63804E-2
9 -.13558 51829 E+15 .40660E-19 -.63237E-1
10 .13075 35010 E+16 .26255E-20 -.40560

1 -.10142 29987 E+17 .16954E-21 -1.68308

12 .63030 81210 E+17 .10947E-22 -4.48311

13 -.31133 36432 E+18 .70689E-24 -7.54344

14 .12066 47804 E+19 .45646E-25 -7.81487

15 -.35999 79518 E+19 .29474E-26 -4,79737

16 .80378 11823 E+19 .19032E-27 -1.64939

17 -.12870 93125 E+20 .12290E-28 -.29168

18 .13803 75975 E+20 .79357E-30 -.23138E-1
19 -.87529 48037 E+19 .51242E-31 -.64163E-3
20 .24329 02008 E+19 .33088E-32 -.34188E-5
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4. Interesting Polynomials near Wilkinson's

Tables X.3 and X.4 1ist a number of interesting polynomials near
Wilkinson's which have one or more multiple zeros. The first columns
list the distance to the polynomial from Wilkinson's, Hqli, and the
multiple zeros Z. All multiple zeros are double except those marked
(3) which are triple. In the last columns are listed the worst condi-
tion number of a multiple zero ¢ and the worst condition number among
the simple zeros.

Table X.3 is based on relative changes in the coefficients of
Wilkinson's polynomial. Table X.4 is basecd on the uniform norm in
which all the weights are 1. Some of the entries are incomplete; to
conserve paper some of the computer codes involved did not print all
details for some of the less interesting polynomials.

A1l the polynomials listed represent solutions of equations pre-
sented in chapters III-V. Most of the solutions are local minima.

The 1ikely candidates for global minima in each category are indicated
by *.

There are apparently a very large number of solutions for the
cases of 2, 3, or 4 double zeros. To keep computing expenses in bounds
it was necessary to discontinue the computation after a certain arbi-
trary number, usually 20, of these solutions had been found. Even
these are not all listed in the tables; some were omitted whose norms

are larger than those listed.

e, e i b
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Table X.3
Interesting Polynomials Near Wilkinson's, Relative Norm
Worst condition numbers
fql z's Hultiple zero Simple zero
unperturbed polynomial .279E+15
* 1. .110E-14 14.4996 .963E+13 .225E+15
2. .127E-14 15.5295 I71EN3 L122E+16
3. .127E-14 13.472 .895E+13 J124E+16
* 4, .128E-14 13.471, 15.531 .895E+13 13F+15
5. .192E-14 12.446 .631E+13 .349E+15
6. .201E-14 16.562 .444E+13 .573E+15
7. .202E-14 12.442, 16.563 .629E+13 .196E+15
8. .376E-14 11.420 .340E+13 J11E+H1S
: 9. .392E-14 12.467, 14.535 .963E+13 . 188E+15
3 10.  .454E-14 17.600 J173E413 JA40EH ¢
. 1. .454E-14  11.413, 17.600 (3376413 .825F+i4
% 12.  .485E-14 14.454, 16.543 L977E+13 .185£+15
3 i3. .615E-14 11.436, 15.573 .751E+13 .156E+15
21 14.  .889E-14 13.397, 17.587 .886E+13 .120E+15
! 15.  .956E-14 10. 396 L141E413 .459E+14
i 16. .101E-13 12.509, 15.451 .841E+13 L218E+15
i 17.  .104E-13  11.454, 13.565 .965E+13 .301E+15
F_ 18.  .110E-13 11.454, 16.516 A79E+13 J1EHS
i 19.  .1126-13  13.573, 16.513 .980E+13 .120E+16
3 *20.  .112E-12 11.451, 13.572, 16.513 .980E+13 .224E+15
3; 21, .131E-13 10.407, 16.612 A17EH13 .816E+14
o 22.  .133t-13 12.527, 17.579 .706E+13 .200E+15
»% 23.  .144E-13 11.468, 14.3M1 .108E+14 .201E+15
% 24,  .162E-13 18.646 .410E+12 .534E+14
f 25. .163E-13 10.381, 18.645 L137E413 .274E+14
i 26. .176E-13 15.383, 17.570 .944E+13 .240E+15
X 27. .182E-13 10.417, 14.668 .106E+14 214E+15
” 28. .197E-13 10.419, 15.378 .968E+13 .307E+15
29. .197E-13 10.417, 17.5N .186E+13 .B74E+15
30. .197E-13 10.418, 15.373, 17.572 .978E+13 .250E+15
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Table X.3 (continued)

Worst condition numbers

. Iql L's Multiple zero Simple zero
31. .210E-13 14.708, 17.564 .114E+14 .360E+15
b 32. .210E-13 10.412, 14,708, 17.564 .114E+14 .250E+15
33 .261E-13 12.475, 15.407, 17.565 .881E+13 .231E+15
34. .264E-13 12.300, 18.638 .597E+13 .619E+14
35. .272E-13 11.487, 14.417, 16.559 . 104E+14 .178E+15
36. .298E-13 12.496, 14.492, 16.525 . 926E+13 .532E+14
37. .317E-13 9.372 .447E+12 .164E+14
*38. .331E-13  13.978(3) .A82E+12 431E+14
39. .343E-13 11.474, 13.514, 15.494 .876E+13 .114E+15
40. .367E-13  15.038(3) 413E+12 .466E+14
41.  .423E-13  12.921(3) A14E+12 .344E+14
42. .547E-13 16.105(3) .253E+12 .199E+15
43, .696E-13  11.868(3) . 268E+12 .195E+14
*44, .110E-12 11.458, 13.531, 15.466, .8B86E+13 J170E+14
17.549
45, .113e-12 19.710 440E+11 .555E+13
46. J18E-12 17.181(3) . 104E+12 .136E+14
47. .130E-12 10.448, 12.557, 14.396, .8B1E+13 .567E+14
18.617
; 48. .136E-12 10.464, 12.526, 14.472, .934E+13 .358E+14
3 16.543
: 49, .138E-12 8.349 .107E+12 J465E+13
50. . 145E-12 9.417, 13.584, 15.444, .857E+13 .405E+14
17.560
51. .150E-12 10.816(3) J31E+12 .818E+13
52. .175E-12 10.462, 12.544, 15.440, .822E+13 .225E+15
17.554
53. .299E-12 10.477, 12.501, 14.542, .102E+14 .164E+15
17.519
54. .321E-12 9.443, 12.309, 14,708, .123E+14 .270E+15
15.777
55. .409E-12 18.273(3) .257E+11 .438E+13
56. .426E-12 9.766(3) .485E+11 .268E+13
57. .808E-12 7.325 L191E+11 .115E+13
58. .160E-11 8.717(3) .135E+11 .652E+12




LA W oD

i

T gt sas A S

T © W5 % 4G e

Table X.3 (continued)

L0%

Worst condition numbers

ot c's Multiple zero Simple zero

59, ,285E-11 19.401(3) .283E+10 .719E+12
60. .652E-11 6.302 . 287E+10 .230E+12
61. .808E-11 7.669(3) .281E+9 116E+12
62. .561E-10 6.620(3) .424E+9 .200E+1
63. .751E-10 5.277 . 224E+9 .384E+11
64. .555E-9 5.570(3) .450E+8 .362E+10
65. J131E-8 4.252 .135E+8 .633E+10
66. .822E-8 4.519(3) .320E+7 .609E+9
67. .381E-7 3.226 .493E+6 .975E+9
68. .198E-6 3.464(3) .142E+6 .982E+8
69. .213E-5 2.196 .950E+4 .162E+9
70. .888E-5 2.404(3) .345F+4 .157E+8
7. .320E-3 1.160 .720E+2 .389E+8
72 .976E-3 1.331(3) .366E+2 JA26E+7
73. 1.414 0.0 .615E+1 .165E+11
74. 1.732 0.0(3) .286E+1 .120E+10
75. 2.19614 -117.314

76. 2.73772 - 9.579

;
i
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Table X.4

Interesting Polynomials Near Wilkinson's, Uniform Norm

Iqn r's " wqrst condition pumbers
ultiple zero Simple zero

{ Unperturbed polynomial .281E+10
! * 1, .135E-9 15.487 .325E47 152E410
| 2. .142E-9 16.524 L271E+7 .295E+10
? 3. .183E-9 14.452 .268E+7 .281E+10
i 4. . 223E-9 17.567 .148E+7 .186E+10
{ 5. (350E-9  13.419 156E+7 120E+10
; 6. .570E-9 18.619 .471E+6 62449
i 7. .936E-9 12,388 .645E+6 A17E+9
i 8. . 294E-8 19.691 .664E+5 .126E+9
i 9. .352E-8 11.358 .189E+6 .106E+9
3 *10. .877E-8 14.465, 16.537 L271E47 .856E+9
% n. .723E-8 13.431, 17.578 .159E+7 J37E+10
3! 12. 114E-7 15.449, 17.550 .327E+7 J17E410
Ei 13. .135E-7 12.397, 18.625
i! 14, .159E-7 11.361, 19.692 .190E+6 121E+9
2 15. .190E-7 10.329 .384E+5 .219E+8
¥ 16. L2157 13.458, 15.557 .333E47 165E+10
1 17. .287E-7 14.387, 18.607 .261E47 .911E+9
i 18. .338E-7 14.547, 17.515 .299E+7 .186E+10
5 19. .359E-7 13.478, 16.422 .306E+7 776410
) 20 L389E-7 12818, 28 62pey 955E+9
¥ 21. .Q46E-7 13.493, 18,597 N77E47 .159E+10
f 22. .889E-7 12.421, 17.490 72647 .167E+10
H 23. .602E-7 16.341, 18.589
b 2, 633E-7  12.431, 14,643
%§ %25, .105E-6 16.925(3) .835E+4 .840E+9
?g ‘ 26. J0E-S  14.988(3) .984E+4 . 382E+9
(L 27. 151E-6 9.300 .529E+4 .319E+7
{Q 28. .156E-6 13.877(3) .728E+4 .212E49
] 29. .159E-6 17.112(3) .477E+4 .214E+9
,i 30. .326E-6 12.811(3) . 385E+4 .901E+8
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Table X.4 (continued)

Worst condition numbers

Il t's Multiple zero Simple zern
31. .398E-6 ]8:2]6(3) . 158E+4 .445E+8
32. .972E-6 11.747(3) .143E+4 .262E+8
*33. .120E-5 13.451, 16.372, 18.585 .326E+7 .198E+10
34. .127eE-5  12.442, 14.592, 17.539 312847 .197E+10
35. .186E-5 8.271
; 36. .192E-5 13.485, 15.496, 17.528 .309E+7 .245E+9
’ 37. .206E-5 19.358(3) .226E+3 .251E+8
38. .208E-5 11.396, 15.820, 18.596 .520E+7 .418E+10
39. .221E-5 13.416, 15.638, 18.574 .385E+7 .193E+10
40. .221E-5 11.397, 16.273, 18.598 .481E+7 .376E+10
41, .239E-5 12.461, 15.384, 17.579 .364E+7 .128E+10
42, .301E-5 12.457, 14.533, 16.469 .270E+7 .107E+10

43. .337E-5 12.460, 14.522, 18.58]
44, .379E-5 12.468, 16.428, 18.575
45. .417E-5 10.685(3) .368E+3 .513E+7
46. .440E-5 14.563, 16.439, 18.573
47.  .496E-5 12.492, 15.530, 18.558
48.  .502E-5 11.411, 15.564, 17.492
49, .531E-5 11.420, 14.116, 18.648
50. .746E-5 11.428, 14,255, 16.742
51. .768E-5 11.429, 14.269, 17.335
52. .896E-5 11.431, 13.5897, 15.31%
53. .948E-5 13.605, 15.29%, 19.668

R AT W kL e SRR o ML

e

54, .265E-4  9.625(3) .637E+2 .657E+6
55. .309E-4 16.019, 17.181, 19.646
56. .378E-4  7.282 .255E+2 .252E45
*57.  .520E-4  12.447, 14.547, 16.447, L2748E+7 .382E+8
18.570
58. .252E-3 11.446, 13.567, 16.444,
18.564
59. .259E-3  8.565(3) L718E+1 .526E+5 ,
60. .327E-3  11.455, 13.528, 15.512,
18.537
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Table X.4 (continued)

Worst condition numbers

' hal t's Multiple zero Simple zero

61.  .340E-3 11.468, 14.434, 16.495,

18.556
62. .728E-3 12.580, 14.355, 17.039,

19.645
63. .141E-2 6.213 757 .132E+4
64. .476E-2 7.504(3) .495 .361E+4
65. .113 5.183 .106E-1 .397E+2
66. .120 6.444(3) L191E-1 .198E+3
67. 7.24 5.382(3) .355E-3 .970E+1
68. 25.3 4,152 .539E-4 .193E+1
69. 1161.4 4.318(3) .258E-5 474E40

70.  .256E+5 3.120
71.  .770E+6 3.251(3)
72. .331E+9 2.085
73.  .525E+10 2.181(3)
74.  .679E+15 1.062
75.  .144E+16 1.140(3)
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5. Discussion of Results

Apparently Wilkinson's polynomial lies near a thicket of inter-
secting branches of the manifold of polynomials with a double zero;
see Figure X.5. Although there is a unique point on this manifold
closest to p, there are other locally closest points in different
directions that are not much further away. In turn the self-inter-
sections of the manifold, which form the manifold of polynomials with
two double zeros, may be found not much further from p than the
first manifold. And by steps that are increasingly larger, but not
overwhelmingly so, it is possible to obtain 3 or 4 double zeros or a
triple zero.

Perhaps the polynomials whose zeros are the integers from 1 to n
form a family akin to the finite segments of the Hilbert matrix [11].
These i11 conditioned matrices have the property that there is no
obvious perturbation to a matrix of lower rank that results in a per-
turbed matrix of satisfactory condition. For large n, rather, there
is a sequence of possible perturbations to nearest matrices of rank
n-1, n-2, etc. Each perturbation in this sequence has the property
that it is neither much larger than the previous perturbation nor much
smaller than the next. Furthermore the corresponding sequence of
nearest matrices of rank n-1, n-2, etc. has the property that each
matrix is somewhat better conditioned than the previous but somewhat
less well conditioned than the next one. Thus the i11 condition of a
Hilbert segment can not be satisfactorily "explained" as due to a
small perturbation of a well conditioned matrix of lower rank.

If an analogy with the Hilbert segments is apnropriate, then

Wilkinson's polynomial can not be satisfactorily "explained" by means
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of the numerical methods described in previous chapters. A satis-
factory explanation would entail an understanding and description of
the geometry of the manifolds of polynomials with multiple zeros and

their intersections.

A
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Figure X.5. A mental picture of the manifold thicket
surrounding Wilkinson's polynomial.
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6. Numerical Results for Translation

Here we summarize some results for translating Wilkinson's poly-
nomial. The zeros of the translated polynomial are #0.5,+1.5,.,.,+9.5.
In the uniform norm the worst conditioned of these are +8,5 with con-

dition numbers of 72, which are well enough conditioned for most pur-

poses. In contrast the condition numbers for +0.5 are .877E-12.

The nearest polynomial with a double zero had 7 = +7.979 and

iqf = .437E-2. Only the condition of the coalescing zeros was improved

significantly, to .402.

Thus in this norm the effects of translation go much farther

toward "amelioration" of i1l condition than do any of the movements

to manifolds of multiple zeros.

When the translation to an even polynomial is carried out, some

of the coefficients in the translated polynomial vanish, Thus, in the

norm that measures relative changes in coefficients, some of the

weights become infinite, Some of the computer codes do not handle

this case properly so only partial results are available,

The worst zeros now are +7.5 with condition numbers .127E+5. The

nearest polynomial with a double zero appears to be a polynomial with

two double zeros at 7 = £6.979. Two double zeros are to be expected

since the infinite weights constrain the perturbation to be even. In

contrast, only one double zero was obtained for the uniform weights.

Numerical difficulties prevented accurate determination of jql,
The difficulties arose from the fact that the code expected only one
double zero so that the other one was poorly determined as two single

zeros. The codes for two double zeros found 7 = +#8.201 with
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fiql = .247E-4 but tr=y seem to have missed the polynomial with
g = +6.979.
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7. Zeros in Geometrical Progression

In [34] Wilkinson also discussed the polynomial of degree 20
whose zeros are in the geometrical series 2'1,2'2,...,2'20. From one
point of view these zeros are all remarkably well conditioned despite
their apparent crowding near zero. Thus just as the first polynomial
was 111 conditioned yet free from clustering in its zeros, this second
polynomial seems well conditioned despite what seems to be extreme
clustering.

For this polynomial, however, all depends on the point of view.
Whereas the first polynomial was i11 conditioned whether uniform or
relative perturbations were censidered, the second is only well condi-
tioned when relative perturbations are at stake.

When relative changes both in the coefficients and the zeros are
considered, the worst zero is 2']] and its condition number is 65.7;
the other condition numbers are remarkably similar, the best being
8.43. In contrast, when absolute changes in the coefficients and zeros
are at issue, the worst is 2719 yith a condition number of .109E+59;
the best is 2"I with condition number .210E+7. In the uniform norm,
then, this polynomial is far worse conditioned than the better known
one with a linear distribution of zeros.

It should be realized that the coefficients of p range from 1
to 1E63 in magnitude. With such a wide range of magnitudes of both
coefficients and zeros, numerical problems made it difficult to obtain
meaningful results. What results were obtained frequently failed some
of the tests described in chapter VIII. Since floating point underflow

is not detected by the CDC 6400 and overflow is known to have occurred,

we will not discuss these possibly contaminated results.



CHAPTER X1
CONCLUDING REMARKS

We have given methods for finding nearby polynomials with various

configurations of multiple zeros. We have exhibited examples to show

| that these methods provide the answer we would expect when the correct

answer is obvious.

For a polynomial 1ike Wilkinson's, however, there is no obvious

answer, and these methods do not provide satisfactory explanations of

the 111 condition of such polynomials. Rather the numerical results

provide evidence of an inherently complicated structure of the mani-

fold of polynomials with multiple zeros.

Finally there are intermediate polynomials for which the "correct"
answer is no longer so obvious but which do not seem to present so con-

fusing a picture as Wilkinson's polynomial. For such intermediate

cases our methods sometimes provide results that seem satisfactory and

- Lt kr 2 oA o = o ok
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T

sometimes do not. But it is not yet clear whether "unsatisfactory"

-~

results are due to defects in algorithms or inappropriate expectations

— e

about the existence of satisfactory nearby polynomials.,

Ao

In each of these areas there is ample scope for further research.

..

PR

For the "obvious" cases we would like to be able to specify starting

AENT

w ,’;‘-'y“-qi".‘}“"ﬂ’ [

points for iterative methods which could be guaranteed to converge

quickly to the global minimum.

For the intermediate cases we would 1ike to know simple criteria

for deciding when, for instance, nearby polynomials with complex con-

jugate pairs of double zeros may exist. More generally we would like

to know when a solution ¢ of the equations we wish to solve does not
exist in a particular region, so that we need not waste time looking there.
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Sketchy information on where to look for ¢ is known for the
case of one double zero, but for other configurations the only known
facts are that the dimensionality of the problem is less than might
have been thought, because certain Lagrange multipliers vanish in the
complex case. We would 1ike to have a simple criterion in the real
case, that will tell us when we may rely on that theorem about Lagrange
multipliers, when we must check real configurations of higher multi-
plicity, and when we must check for complex conjugate multiple zeros.

The new expansion technique discussed in chapter VII provides
some interesting questions. In how large a region can realistic
bounds be computed easily? It would be desirable to have a symbolic
algebra program to provide these tsdious bounds automatically. Do
these bounds have any significant advantages over Smith's [42]?

A task of a different sort is to render the existing mass of
algorithmic ideas and devices into mathematica! software. The com-
puter codes with which the research reported here was conducted were
constantly changing and required considerable experience to direct the
search and interpret the results. They were dependent on the local
computing environment in many ways and most 1ikely contain some errors,
which would probably not affect the results presented in previous
chapters.

In contrast, respectable mathematical software is carefully
specified, written, documented, and tested. Then it is independently
examined and tested again, The experienced computer programmer now
recognizes, moreover, that the production of quality mathematical soft-

ware from its raw materials entails as much effort «: providing those

..
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raw materials. Consequently that production will be deferred to another
occasion in this case,

The final, and perhaps most difficult, challenge is to unravel
the nature of the manifold of polynomials with multiple zeros, partic-
ularly in the vicinity of polynomials 1ike Wilkinson's. Although
numerical investigations may sometimes be helpful, probably the prin-
cipal factor for success will be the investigator's competence in
algebraic geometry.

Turning now to a more general point of view, we should recall that
one reason for studying polynomials is that they are simpler than the
often infinite dimensional eigenvalue problems they frequently replace.
Thus the more general problem might be stated as follows: given a
linear operator, some of whose eigenvalues are i11 conditioned, what
is the nearest linear operator whose eigenvalues, some of them multiple,
are all well conditioned?

Ruhe [27], Wilkinson [36]}, and Kahan [16] have all given bounds
for the distance to the nearest matrix with a multiple eigenvalue.
Kahan [17] and Golub and Wilkinson [39] have also surveyed the known
theory. But there are no known computational techniques which are
even as reliable as those discussed previously for zeros of polynomials.
The closest related work is that of Kdgstrom and Ruhe [15) on finding
the Jordan canonical form of a matrix. Otherwise the many refractory

aspects of the problem remain untouched for future investigators.



APPENDICES

1. Using the Zeros of a Polynomial to Compute Its Coefficients

Our object is to display the well known algorithm for computing
the coefficients of a monic polynomial from its zeros. If we are to

determine the pj in
n n 3
M (r-gg) = 7"+ Jpa
Al J=

and we expand directly we find

p. = )) (T (of the (-;j)‘s in each combination)]
over a1l (7) combinations
of the n (-;j)'s taken j
at a time

We can avoid this n! calculation by building up the coefficients

recursively. If we have a polynomial

k
p (1) = I pk k-d . 1 (=5 » Pk =1,
j=1 ] 0

we can form the polynomial of degree k+1 by multiplication by (T°Ck+1):

ol = z P )

k
k k-
I pJ(-Ck"’] )T ]

k§1 (k+1) k+1-J
j=0 J
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where

k

B LRI L

k¥1 _ J k_ k - ¥

Pj T Py GPiy s d = kkell2,1
1 , §=0.

We 1ist the coefficients in the order that they could be successively
computed and overlaid in storage.

In the case of real polynomials, we wish to avoid complex arith-
metic by considering complex zeros and their conjugates together.

Then

k+
P Z(T) . Pk(T)’(TZ"Z(Re Ck+1)T.+ICk+1|2)
SO
r'ck‘.]lzpt 4 J = k+2 4
-2(Re z, 4) k~+lc |2 = kel
k1 7Pk T 1o P y 4 .
+ k 2 k
p; 2 = 4 p?-Z(RE Ck+])pj_] + |Ck+]| pj_z » J =k, ST A I h
Py - 2(Re ¢, ,,) s dWA
\] ' ] J = 0 .

It may happen that we are only interested in the last few coeffi-
cients or the first few. The formulas above may be used for the first
few coefficients corresponding to high powers of 1.

To find formulas for the last few coefficients, corresponding to

low powers of T, we redefine the pg as follows:

k
¥ k_j
p(t) = § psv .
s
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Then

and in the case g ., = Cyuq»

P

k+2 _
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1 » J o= kil
k+1 _ k _ k 9 =
pj = pj_] Ckﬂpj s J LSP
L L A
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1 >

p":_] -2Re Tkt
k k 2 k
pj_z-ZRe Ck‘ﬂpj-] + lck.',]l pj

2 k
-2Re T,y Ph + 1241 1%P)

U Y ng

!2)] 3

k+2 ,
k1 ,
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2. Simultaneous Evaluation of a Polynomial and Some of its Derivatives

Ways of efficiently evaluating a polynomial and its derivatives
simultaneously from the coefficients have been studied by Shaw and
Traub [29] among others.

Rice [26] has argued that, given the zeros ;j of a polynomial,
computing the product

p(1) =
J

DEE

(T'Cj)

is usually the method of evaluation that minimizes the uncertainty in
p(t). When the polynomial is evaluated in this way the relative error
in the final result, due to rounding errors, is always small on a
properly designed machine. In contrast the relative error of the
evaluation from the coefficients is usually large when T is near one
of the cj.

Furthermore if the zeros are the primary data, rather than the
coefficients, the attempt to compute the coefficients from the zeros
will, in the presence of rounding errors, produce wrong coefficients
which will be the coefficients of another polynomial with different
zeros. If the new zeros are i11 conditioned they may be rather far
removed from the zeros we started with.

Therefore we prefer to evaluate polynomials and their derivatives
directly from the zeros if they are the primary data. Typical expres-

sfons for the polynomial and two derivatives follow:
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Hethod N:

n
p(t) = N (r-cj)
j=1

1 _ n 1
P((TT)) ) J-Z e

1 T8
Pg((j)lg (g 132§ 1
ALV H Bt S H (r-cj)2

Similar expressions for higher derivatives may be found by means of
Newton's identities which are described in Householder [12]. These
expressions have the defect, however, that in the presence of rounding
errors, they tend to have high relative errors which are revealed by
cancellation at the end. Thus if T % cj in the expression for p"/p,
the two subexpressions will tend to cancel with subsequent severe loss
of significant figures. By algebraic manipulation we may be able to

find forms for these expressions in which cancellation is not pre-

ordained. For instance

but this expression is not applicable when 1 = ;j exactly.
Therefore it is helpful to use different methods for computing a
polynomial and its derivatives from its zeros. These methods are

based on the observation that if

plr) = M(r-g;) = Tpm ™y pg=1,

j= j=0
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= ' = i k = k!
then p(0) P, p'(0) Ph-1» 2and in general, p~(0) = kp, -
Therefore we can evaluate the polynomial and m derivatives at 0 by
computing the last m+1 coefficients of p from its zeros Cj.

Moreover we can evaluate P and its derivatives at o by com-

puting the coefficients of the polynomial whose zeros are Cj"“’
Method A:
p(k)(a) = k!{n-k coefficient of polynomial whose zeros are cj-a}

Another method is based on the observation that

n n n n
a(r) = 1oyt = () - " 1 (%-cj) = Mg M (-
50 =1 SREI S Y
Then
% * Ppok

n
= JI (-cj)-{kth coefficient of polynomial whose zeros are éLJ

j=1 J
= p(k)(O)/k!

So continuing as before,
Method B:

p(k)(a) = k!p(a){k coefficient of polynomial whose zeros are C'"-a}
J
Like Newton's identities, however, this method is undefined if o = cj.
We might conduct operation counts to help choose from among these
methods. They all require nm-*o(mz)'+0(n) operations to evaluate a

polynomial and m derivatives. Therefore we choose Method A since it

is applicable even when 1 = Cj'
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3. Partial Derivatives of a Deflated Function of a Complex Variable

\ When minimizing norms of functions of complex variables we are
often required to find zeros of non-analytic functions of a complex
variable. There seems to be 1ittle general theory for such functions
other than that of two real analytic functions of two real variables.
Consequently when finding zeros of such functions by Newton's method
we solve systems of two equations.

Having found one solution we may wish to deflate it out in order
to find other solutions. Fortunately there is a way of deflating such
functions that makes sense, In contrast, there is no completely satis-
factory way of deflating solutions of systems of n real equations in
n variables for n > 2.

f(t) will be the function to be deflated; it is not analytic.
Let Z,,...5%, be the zeros to be removed; we will divide f(t) by
the polynomial

k
D(T) = I (T'Ck) .
=1

The deflated function g(t) = f(t)/p(t) is not analytic, but the
analyticity of p will simplify the expressions for the partial derie

g S S

vatives of Re g and Im g.

srees

; ' D
@

Let (') represent a differential operator, either IT&%‘F or
Then

dlmt

AE———

(R€ g) = (Re 5) = (Re fRe(%) ’ Imflm(%)l

= [(Re f)Re(%) +Re f (Re %) <Imf (Im.(%)) - (Im f)Im(%)l

and
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dReg _ po(lydRef 3Imf fp!
oReT Re(p)a Ret ~ u ( )a Re 1 Re(J?Z_) Y

where p' represents the complex derivative of p, é%fl. Similarly

and
9Img _ Lalmf .- 1\aRef fp'
dRe T Re(p)BRET I()aRe-r Im(—PZ_) i
and

almg E( )BImf
dlmt dlmT

/'\

-U_o

- Re (_92_)

These partial derivatives are now in a form suitable for use in Newton's

method applied to a system of two real equations in two unknowns.
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4. Computing the bivided Differences Rec.ired in the Equations

to be Solved for Complex Conjuaate Doubie Zeros in Chapter IV

Below will be found the recurrences required to compute

Ap’ Ap,, and Lk 3

the divided differences of section IV.3. 'le will also obtain deriva-

tives with respect to Re z and Imz for use with Newton's method.
_ k
by = (Im £7)/(Im )
sO ‘0 = 0, A.l =1, and
k-1,

b = Recd, ; + Re(g

If we write

and

we find:

by = 0.

. k=1
b =Rerd o +Re(),

m_,m_m_
Ao‘A] Az 09

m, m k-2
Ak ReCAk_] - (k'1)1m(C ) ’

A; S ‘;‘ = 0 ’
ke
A; = Ak-'l + Re;A:_.l + [k-1)Re(z 2) 3

In order to compute Ap and Acp‘ it is necessary to start by

recalling the formulas for updating p ard p'. If the zeros of p

are L., 1 <1i<n, then we could define
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k

p, = H(cc)
k i=]

Then we may imagine updating Py by one real zera L, or by two com-

plex conjugate zer:s %, and E+. Then

Po=T1s Py = (2-2,)p, »
Pren = (z? - 2(Re c+)c-+lc+|2}pk ,
) =0 Py = (c-c+)p§ * Py o
% - 2(Re ¢ RITAINE Yo + 2(z-Re g )p, ,
(T=g,)oy + 29,

Pre2
Pg =0 . Prel

(% - 2(Re g e+ Ic+I2}p;;+2
+ 4(g - Re g, e, + 2p, .

Pya2

The formulas for computing Ap and its derivatives are as follows:

Im Pa
mt -0
Im Pre
Yot = Rep, + Re(t-g )(-,—)

Im pyyo s 12,02 " Pk, 2Re (g-z )R
T e = Rele? - 2(Re ¢,)z 12 W) €18t )Re p,

Imp,, p
—R—(—rﬁ) Re p, + ("I_‘) Re(c-¢ )—ke_c-(ﬁ *

I
TRECTRSD) = 2 Rele-e, ) + 2Res, + 2 eleee e o

+ Re{g? - 2(Re g )C*IC.,I }?ﬁe—-(m ,

Im p
a k B =
dlmzg ( Img ) Im pk * Re(z- ‘+)a Im;( !m c
Im Prs
TR W T *2) . Re(z-¢, )Im Py = 2Imp,

+ Refz? -2Re(g, )5+ ¢ lzlﬂm)
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Note in passing that

3 Impk_lm p"(
dReC Im¢ Img °

We now state the corresponding formulas required for A

zp’
ImmCEc' = Rep' + Reg M Rep' +Rez _Ra___(lm c) ,
2
o _Imtp 3¢ (Imp
TReT Tne " PPt TReeiin g ¢ Rec(aRec)TIm o
Im C = " ) Im
—,— -Imp" + Re L opere e mc(T‘P'm z)
Imp Imp Im p
0kt pan k K
TRt e " ReP T Rt ey e
2 Im p Im p 2 Im p
d k+1 . 3 s
= Rep) + 25— +Re(g-z ’
(3Rec)? M 25T T Horen? Tt
52 Imp, 1, Imp, 2 In p,
3Img oRet Img = ~IMP* _I"_Trﬁ'* Re(C-C,,,)m T
Imp Im p
) k+2 . i : k
+ Re(cz-ZRe(c Jo+ | |2} 2 Impy
+ C<|- SRQC Imc °
. 32 Im Dk+2 Im p Im pk

= } _k_ - )
(2Reg) Mme 4Repy + 2=+ 2Re(c C+)(Rep;+2a—ﬁe_c'!ﬁ)

2 Imp

2 2 ) k

+ Re{g®-2(Rez, )+ iz, |} .
YUY oReg) T T

LY S +2 Re( " Py
STae ORET g - -4 ImPp2Re(ag,) (Impy s i )
Imp
K

+ Re{c - 2(Re C+)C"' |C+|2}W -ri?.
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5. Computing the Divided Differences Required in the Equations

to be Solved for Two Real Double Zeros in Chapter V

The equations which follow provide recurrent methods for computing
the divided differences required to solve (6.6) of chapter V.

Necall

A

k_k
e 2 (880 (24-2,)

Therefore AO = (0, and ‘1 = 1. Ve may verify that

& = LHdy ""z(-] = Tobyy *‘?-] ,
34 34
K k-1
ol BT MEREE
2 34
S S B
3(2 2 3(2 k']

The equations for Ap x 2re more complicated. Recall that
1 )

i cgp(c,)- cfp(cz)

‘p.k a c] -cz

To compute & when p 1s given in factored form, it is necessary

P,k

to fix k and develop A recursively by considering each factor

p,k
of p in turn. To start, suppose p = 1; then Ap K* "k‘ Now

1 ]
suppose that Ap K is ‘nown and p i{s to be multiplied by a linear

factor (t-a). Then denoting the new divided difference by & D,k
+1 7

Lok

o (c;p(c1)(c,-a)-c?p(cz)(cz-a))/(c,-cz)

CICZ‘p‘k-] - GAp’k .
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Furthermore
34
.k A 34
1 PF P k-1 .k
o a AL o, k1) - e TL;]
and
I N
+'Ip'k =z 1z 3y k-1 2 } - a‘p,k
3, 1772 "o, p,k-1" = @ e,

if p were real and a were complex it would be desirable to
update p by the real quadratic factor (1-a)(t-a). Let 4 ook
+2 P
represent this updated divided difference:

K
(- 2Reaty + [al?) - £¥(22- 2Reat,+ a]?)

A

+2 Pk “-%
. 2 2
e 2(Re a)zy2ohy oy * lal"2y
k LY \ 5 34
Pk 2 p k=2 2 %3p .k
%, SLACN ALY 3, 3+ lof Ta%]"
a‘ k-]
- Z(Re a)cz{‘p.k-] *C] - ac] —} .
o4
The corresponding equation for 3%5 may be found by interchanging
& and 8-

Similar methods may be applied to

i c'z‘p'(c,)-c?p'(cz)
bor ok F % - G
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Note first that

Pyy(T) = (w-ap(x) ,
Py (t) = (v-a)p'(x) +p(1)
Py (1) = (r-a)p"(x) +2p'(x)

and

Pyplt) = (t-a)(t-a)p(t)

Pyo(T) = 2(-Re a)p(t) + (t-a)(t-a)p'(7) ,

Pyp(T) = 2p(7) + 4(7-Re a)p' (1) + (t-a)(t-a)p"(1) .
Then

Aotk Erfby ke T oyt

.k 3 W,
+1P ' k-1 ) ko, 2ok
A TR R

. 2 2
A, K (C]Cz) ‘p',k-z - 2(Re G)Cltztp.’k-] + IaI ‘p‘.k

5K 3
P X 2 p' k=2 23 g ,
T LA e T S U lal

fg',k-l

- 2(Re u)C]{CZ :

* ‘p. 9k']}

Ay a1

+ 25,(y, —E'-1— i1} - 2Re u) ac,

These formulas may be used to calculate A k and A except

P p',k
when k=0 or k=1. In those cases the formulas would require

Ap .1 Which is not defined.
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To deal with that difficulty, different formulas for divided
differences must be used for k=0 and k = 1. These formulas will

be based on the finite difference analog of Leibniz' rule:

xy(8,) - xy(8,)
8, - 5,
x(8y) +x(8,), v(8,) -y(8,)
5 ( / 8, -8 J
17%
yie,)+y(e,) x(e,)-x(e,)
e [ e K

A(xy)(8,,9,)

Here x and y are functions of a single variable; the divided
difference of the product xy 1is sought for the points (6].62).
This and other divided difference identities may be found in the book
by Milne-Thomson [23].

For our application, x will be p(t) or p'(r) and y wil
be the updating factor (t-a) or (t-a)(t-a). We find that

(¢-a) + (cz-u) L Ple) +e(zy)
Se0” - A

a:l pP,0 (51'0) + (CZ Q) a‘

\ ] (c]-u)(t]-uh (tz-u)(cz-u)“
+2plo T J plo
(%) + (%))
i’—-]—2-£’——((~.] -Re a)(z, -Re a)) ,

34 - .
2P0 (2-0)(gy-a) + (2,-a)(5y-a) 2,
;c] = ( ‘2 ) 5;1- + (C'l - Re u)‘p’o

p(gy) +p(g)
t——— ?P.(C])((C] - Re Q)(Cz'Re u)) ’




G +E (z;) +p(z,)
R 2 ke LAY AN
+A2p,1 (3 'ZRE“)Cﬁz‘p,o +lal"ay 3+ g5 > )

3 A

1 I+ a4
P! ST - %%,0
2 ( > -2xea)c1z..2 3,

- e
+ Cz("] +§§2 -2 Re G)Ap 0

3
2 9%,1, ] :
+ |a et 7550 (5)) +p(z,)) .

Similarly
(g,-a) + (z,-a) (&) % p!
boig*® 12 b, .+ (p P ¥P (CZ)\ + 4
"Hp ’ 4 p',0 2l / P,o ?
aﬁl p',0 (Crd)*(cz-d)\%p. 0 1 ) aAE 0
ac] = 2 / 3 + ?‘p',o * 7P (Cl) * ac] 2
i p'(5) +p'(z,)
-;Azp.’o ' ( 2 ] ){(C] 'Re a)j (CZ 'Re a)]’
. ((c] -a)lg,-a) + (‘2'“)(52'“)\A
2 ‘“p',0
+ ((ty-Re a) + (zy-Re a))s, o + p(5y) + p(z,)
15P0 (g -Rea)+(t,-Rea) p'(5)) +p' (z,)
T 7 PUG)
(gy-a)(g,-a) + (2,-a)(c,~a) 34
A N 1 1 2 2 '.0
%. + (C] Re G)Apl’o + ( ? ) gz]
3 3Ap 0
g + ((C] 'Re a)+(c2 'Re a))-}?]—- + Ap’o + P (C]) R
'
; Finally

P'(g)) +p'(zy) &y*t,
Lea TR s 2Realtny

2
+ |al Ap'.‘l + ZCICZAP,O - 2(Re a)Ap’] §

»

292




:
g

cagheies Sl g
S

R Y

3 A [l ] ]
1 p'(zy) +p'(z,) 34
2P . ] 2/ 1
a2k () * g > ) - 2(Re “)“a%;"
1, ot
+ :2{?:1 +(—-2——--2Rea)}Ap.’o
T,¥C, 34
1752 ',0
ELR 34

P, p,0

Taken together, the foregoing equations provide all the divided
differences required in chapter V. To inhibit convergence to the
remaining unwanted solutions it is still necessary to use the defla-

tion techniques of section 5 of that chapter.
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6. The Lagrange Multiplier Theorem

The following corollary of the Fredholm Alternative Theorem
provides the basis for the use of Lagrange multipliers to find
stationary points of functions subject to constraints. The vector g*

is the vector of Lagrange multipliers.
Theorem. Llet B map " to (", Then
(for every xe ", Bx =0 = y*x = ()
if and only if there exists an 2* ¢ " such that
y* = g*g ,

See Dunford and Schwartz [9, p. 609] for a statement of the Fredhoim
Alternative Theorem in an arbitrary Banach Space, and for references

to a proof.



10.

11.

12.

13.

14,

15.

16.

AR AT

REFERENCES

G. Bliss, Algebraic Functions, American Mathematical Society,
Providence, 1933.

R. Brent, Algorithms for Minimization without Derivatives,
Prentice Hali, 1973

R. Buck, "Applications of Duality in Approximation Theory," in

H. Garabedian, ed., Proceedings of the Symposium on Approximation
of Functions, Elsevier, pp. 2?-4?T'T§ES. T

B. Carnahan, H. Luther, and J. Wilkes, Applied Numerical Methods,
Wiley, 1969.

G. Collins, "Subresuitants and Reduced Polynomial Remainder
Sequences," Journal of the ACM 14, pp. 128-142, 1967.

G. Dahlquist and A. Bjorck, Numerical Methods, Prentice Hall,
1974.

J. Daniel, "“Correcting Approximations to Multiple Roots of
Polynomials," Numerische Mathematik 9, pp. 99-102, 1966.

D. Dunaway, “Calculation of Zeros of a Real Polynomial through
Factorization using Euclid's Algorithm," SIAM Journal on Numerical

. - 2 T s W FE 7 %
. T W P T VS T L T

Analysis 11, pp. 1105-1120, 1974,

N. Dunford and J. Schwartz, Linear Operators Part I: General
Theory, Interscience, 1958.

M. Eichler, Introduction to the Theory of Algebraic Numbers and
Functions, Academic Press, 1366.

G. Forsythe and C. Moler, Co%guter Solution of Linear Algebraic
Equations, Prentice Hall, .

A. Householder, The Numerical Treatment of a Single Nonlinear
Equation, McGraw Hi1T, 1970.

IMSL, IMSL Library 3 Reference Manual, International Mathematical
and Statistical Libraries, Houston, 1975,

M. Jenkins, "Algorithm 493. Zeros of a Real Polynomial," ACM
Transactions on Mathematical Software 1, pp. 178-189, 1975,

B. Kigstrom and A. Ruhe, An Algorithm for Numerical Comoutation
of the Jordan Normal Form of a Complex Matrix, Department of
Tnformation Processing, University of Umed, Sweden, 1974,

W. Kahan, Ruhe's Theorem on I11-Conditioned Eigenvalues, Technical
Report #5, Department of Computer Science, University of
California, Berkeley, 1971.

295



gl e

o

17.

18.

19.
20.
21.

22.

23.

24.
25.

26.

2v.

28.

29.

30.

3.

32.

38

W. Kahan, Conserving Confluence Curbs 111 Condition, Technical
Report #6, Department of Computer Science, Un1vers1ty of
California, Berkeley, 1972.

W. Kahan, Implementation of Algorithms, Technical Report #20,
Department of Computer Science, University of California,
Berkeley, 1973.

W. Kahan, unpublished notes on polynomials, 1973.

T. Kibble, Classical Mechanics, McGraw Hill, London, p. 25, 1965.

M. Marden, The Geometry of Polynomials, American Mathematical
Society, Providence, 1966.

A. Markushevich, Theory of Functions of a Complex Variable,
Volume 2, Prentice HaIE pp. 105-112, 1965.

L. Milne-Thomson, The Calculus of Finite Differences, Macmillan,
London, 1960.

R. Moore, Interval Analysis, Prentice Hall, 1966.

A. Ostrowski. Solutions of Equations and Systems of Equations,
Academic Press, 1966.

J. Rice, "On the Conditioning of Polynomial and Rational Forms,"
Numerische Mathematik 7, pp. 426-435, 1965.

J. Rice, "A Theory of Condition," SIAM Journal on Mumerical
Analysis 3, p. 287, 1936.

A. Ruhe, "Properties of a Matrix with a Very 111-Conditioned
Eigenproblem," Numerische Mathematik 15, pp. 57-60, 1970,

M. Shaw ind J. Traub, "Analysis of a Family of Algorithms for
the Evaluation of a Polynomial and some of its Derivatives,"
Journal of the ACM 21, pp. 161-167, 1974,

B. Smith, "ZERPOL, A Zero Finding Algorithm for Polynomials Using

Laguerre's Method," M.S. Thesis, Department of Computer Science,
University of Toronto, 1967.

G. Stewart, "Error Analysis of the Algorithm for Shifting the
Zeros of a Polynomial by Synthetic Division," Mathematics of
Computation 25, pp. 135-139, 1971,

G. Stewart, "The Convergence of Multipoint Iterations to Multiple

Zeros," SIAM Journal on Numerical Analysis 11, pp. 1105-1120, 1974,

J. Traub, "*erative Methods for Solution of Equations, Prentice
Hall, 19u-.




e g <

T ———
s L

o

-

v

T

N 7 P IO o gl v % A

34.

35.
36.

37.

38.

39.

40.

4.

42.

J. Wilkinson, Rounding Errors in Algebraic Processes, Prentice
Hall, 1963.

J. Wilkinson and C. Reinsch, Linear Algebra, Springer Verlag, 1971.

J. Wilkinson, "Note on Matrices with a Very I11-Conditioned
Eigenproblem," Numerische Mathematik 19, pp. 66-68, 1972.

V. Zaguskin, Handbook of Numerical Methods for the Solution of
Algebraic and Transcendental Equations, Pergamon Press, 1061.

Association for Computing Machinery, Proceedings of the Second
Symposium on Symbolic and Algebraic Manipulation, ACM, 197T.

G. Golub and J. Wilkinson, "I11 Conditioned Eigensystems and the
Computation 5t the Jordan Canonical Form," SIAM Review 18,
pp. 578-619, 1976.

H. Kung and J. Traub, A1l Algebraic Functions can be Computed

Fast, Department of Computer Science, Carnegie-MelTon University,

J. Pinkert, "An Exact Method for Finding the Roots of a Complex
Polynomial," ACM Transactions on Mathematical Software 2,
pp. 351-3€¢>, T976.

B. Smith, "Error Bounds for Zeros of a Polynomial Based Upon
Gerschgorin's Theorems," Journal of the ACM 17, pp. 661-674, 1970.




ynclassified

Secunty Classification

DOCUMENT CONTROL DATA-R& D

(Security clasasilication of title, body of ebstract amd indening annotation niist be ernteced when tie averall report is classifiad)

t ORIGINATING ACTIVITY (Corporate author)
~Electronics Research Laboratory
.tUniversity of Califernia

v

28, FEFORT SFCURITY CLASSIFICATION

ynclassified

2t LN uP

- Berkeley, CA 94720
) -Saqﬂonr TITLE IR —— T T
-('EXPLAINING AND AMELIORATING THE ILL CONDITION OF ZEROS OF#ROLYNOMIALS 3\

i A O

e o

Py

e s S P o g o B <t

4 DESCRIPTIVE NOTES (Type of repott end Inclusive datas)

) A’u’y.qnpﬂ_u\l,(f'y‘n_l nen idd/e :nitisl, last name)
David Granvi]13/Hough )-
[ ter J T T
/ é 7)5/1&} 7 7 )
[

3. REPOAT DATE
BT L/’
'Y l\i%?:caf ZSC 0013’ .

Y?ﬁ GRANT NO

May 6, 1977

", <N&"N‘Y°..‘ L
: N@¢¢gq,é7w4-¢2¢¢”{égg

l[‘UCBZERL—W?/B !

2 e

-

S, OTHER REPOAT NOLS) (Any other >
thie report) (Any numbars that mey ba essignad

e o i

d
10 DISTRIBUTION STATEMENT

unlimited distribution

14 SPONSORING Mi_ “ARY ACYIVITY

Office of Naval Research

Department of Navy
Arlington, VA 22217

'3 ABSTRAC®

Physical systems can frequently be modeled by polynomial equations. Then inter-
esting properties of the systems can be determined fror the zeros of the polynomials.
Standard codes compute those zeros from the coefficients in a stable fashion. But
what should be done if the zeros are inherently hypersensitive to changes in the

L IUPBLEMENTARY NOTES

b i

[ P o s g

e

;3 coefficients of their polynomials? Newly developed methods can be used to explain

1} such an i11 conditioned polynomial by exhibiting a2 nearbv polynomial with one or more
- multiple zeros which are well conditioned. Furthermore these methods can be abused by
ii uncritically replacing the i11 conditioned polynomial with the well conditioned one

Eg nearby. When such a replacement is unwarranted, bounds can be obtained on the varia-

tion of the zeros corresponding to the uncertainty in the coefficients. One way to
obtain such bounds is to exploit the nearby well conditioned polynomial to obtain a
revision of the classical Puiseux fractional power series expansions of the zeros.
These notions have been investigated experimentally in a long series of computer
“calculations. In the course of these calculation: the existing stock of numerical
techniques has been augmented. A new way is now known for computing the condition
numbers which measure the condition of zeros. The previously knawn equations to be
solved for the nearest polynomial with a single multiple zerc are now joined by equa-
tions for the nearest polynomial with a complex conjugate pair of double zeros and
equations for the nearest polyncnial with several distinct double zeros. A1l these
equations have simolified forms because certain Lezarange multioliers vanish in the
corplex case. But some examples dermonstrate that wren cnly real perburbaticrns are
considered, the Lagrange multipliers do not always vanish. Finally, there is some
theory about the locatdion of the nearest pclynomial with a double zern. Tover)

| DD ‘r.?;:'.,1473 i 2 7\ \‘)f) é _yr_aﬂassi:(i?’g‘ — " e

vy

(agk 1)

L ea 4400




e e

:.u‘ Aw “‘ ‘. ¥

unclassifi
scurity Clessificstion

U TR

SR KT

REY WORDLS

P

-

The numerical experiments show that Newton's
method may be used successfully to solve the equa-
tions in the cases of greatest interest when the
expected result is sufficiently simple. The tech-
niques may also be applied to polynomials such as
Wilkinson's ramous example whose zeros are the
integers trom 1 to 20. But then the numerical
results suggest *hat that i11 conditioned polyno-
mial can not be explained successfully as a small
perturbation of a well conditioned polynomial.
Instead Wilkinson's polynomial lies in a region of
polynomial space whose geometry seems to be excep-
tionally complicated.

Bounds on uncertainties in zeros corresponding

to uncertainties in coefficients are customarily
’ computed with Taylor series. For i1l conditioned

simple zeros these Taylor series have radii of con-
vergence that are much too small. The well condi-
tioned multiple zeros of a nearby polynomial are
not amenable to Taylor series expansions but may bé
expanded in a Pyiseux fractional power series.
These fractional power series, however, also have
unsatistactory regions of convergence. But by
choosing a different starting point the convergence
problem of the Puiseux series can be overcome to
oroduce, in principle, series that converge rapidl
throughout the region of interest. In practice
those series are used to produce realistic bounds
on the uncertainties in the zeros. Full exploita-
tion of these techniques awaits adequate facilitieg
for symbolic algebra.
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